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Problem with perturbation theory

Generically perturbation expansion in a QFT is an
asymptotic expansion.

– has zero radius of convergence.

String perturbation theory is also expected to be an
asymptotic expansion.



To gain some insight into asymptotic expansion,
consider:
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Kν(x): Modified Bessel function of the second kind.

Its perturbation expansion in g
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∞∑
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has vanishing radius of convergence.



The plot of the ratio of 1st, 3rd and 7th order
perturbative results to F(g) as functions of g:
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Higher order terms make the result worse at finite
coupling.

⇒ asymptotic expansion cannot be directly used for
finding even the approximate value of the function at
finite coupling.



Since the mid 1990’s we have known that many string
theories and QFT’s have strong-weak coupling
duality.

A string theory / QFT with coupling g is equivalent to
another (or same) string theory / QFT with coupling
1/g.

Thus the theory for large g can be studied using the
dual theory at small g.

Can we use this to address the question of what
happens at finite coupling?



Strategy for studying the theory at finite coupling

In a dual pair of theories, any physical quantity F(g)
can be studied both at small g and large g.

We have a Taylor series expansion of F(g) at both
ends.

Try to combine both informations into one function.

We shall discuss in detail one class of such functions
based on fractional power of polynomials (FPP).

But often other functions like multi-point Padé
approximants can also be used.



Suppose we know that

F(g) = A ga(1 + c1g + c2g2 + · · ·+ cmgm + · · · ) as g→ 0

F(g) = B gb(1+d1g−1+d2g−2+· · ·dng−n+· · · ) as g→∞

Then define the approximation Fm,n(g) to F(g) to be

Fm,n(g) = A ga

{
1 + a1g + · · · amgm + bngm+1

+ · · ·b1gm+n +

(
B
A

)m+n+1
b−a

gm+n+1

}(b−a)/(m+n+1)

a1, · · · am,b1, · · ·bn are fixed by matching the Taylor
series expansion of Fm,n(g) at small and large g with
those of F(g).



To test the efficiency of this procedure let us go back
to

F(g) =

∫ ∞
−∞

e−x2/2−g2x4/4! dx

Following the prescription given earlier we can
construct the interpolating functions Fm,n(g).

A plot of F0,0(g)/F(g) and also the ratios of 0-th order
weak coupling result and 0-th order strong coupling
result to F(g).
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A plot of F4,1(g)/F(g) and also the ratios of 4-th order
weak coupling result and 1-st order strong coupling
result to F(g).
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A plot of F4,1(g)/F(g) on a different scale.
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Lesson: Knowing the function at two ends we have a
much better description of the function than knowing
it at either end.

This procedure has been tested on many other
functions with similar encouraging results

Typically at 5-10% level the difference between
successive approximations gives a good estimate of
the error.

We shall now apply this insight to string theory and
QFT.



SO(32) heterotic string theory contains a stable
massive particle transforming in the spinor
representation of SO(32).

Its strong coupling dual is the stable non-BPS
D0-brane in type I string theory.

Goal: Determine the mass of the stable particle as a
function F(g) of the coupling constant g of heterotic
string theory.



Known weak coupling expansion (with suitably
scaled g and F)

F(g) = g1/4(1 + Kw g2 +O(g4)), Kw = .23

Known strong coupling expansion

F(g) = g3/4(1 + Ks g−1 +O(g−2)), Ks = .351

Using this we can compute Fm,n(g) for m ≤ 3, n ≤ 1.



F0,0(g) = g1/4 (1 + g)1/2 ,

F0,1(g) = g1/4 (1 + 4 Ksg + g2)1/4 ,

F1,1(g) = g1/4 (1 + 6 Ksg2 + g3)1/6 ,

F2,0(g) = g1/4 (1 + 6 Kwg2 + g3)1/6 ,

F2,1(g) = g1/4 (1 + 8 Kwg2 + 8Ksg3 + g4)1/8 ,

F3,0(g) = g1/4 (1 + 8 Kwg2 + g4)1/8 ,

F3,1(g) = g1/4 (1 + 10 Kwg2 + 10 Ksg4 + g5)1/10
.

In this case we do not have a known result to
compare to, but we can get an estimate of the error by
comparing results at different orders.



Graph of Fm,n(g)/F3,1(g) vs. tan−1g for different (m,n).
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Except F0,0, all other Fm,n’s lie within about 10% of F3,1.



Other interpolation schemes e.g. Padé approximant
also give results within 10% of F3,1.

⇒ F3,1(g) most likely gives the mass of the stable
non-BPS particle within 10% over the entire range of
g.



Application to N = 4 SYM theories with SU(N) gauge
group with Beem, Rastelli, van Rees

Our focus will be on the non-BPS twist two operators:

OM ≡ Tr(φIDMφI), M = 0,2,4, · · ·

Conformal dimension

∆M = 2 + M + γM

Perturbative result for γM is known to four loop order
for M=0,2 and three loop order for M=4.

Kotikov, Lipatov, Onishchenko, Velizhanin; Kotikov, Lipatov, Rej, Staudacher, Velizhanin;
Fiamberti, Santambrogio, Sieg, Zanon; Bajnok, Janik, Lukowski; Velizhanin

Our goal wil be to compute γM at finite N and

τ =
θ

2π
+ i

4π
g2

YM
≡ y + ig−1



Beem, Rastelli and van Rees found constraints on ∆M
using conformal bootstrap approach.

The result was a strict upper bound on the
anomalous dimensions, e.g. in the ∆0 −∆2 plane:
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The bootstrap approach does not tell us what the
dimensions are as function of τ .

Nevertheless BRV suggested that the corner values
correspond to the actual values at τ = i or τ = eiπ/3



Strategy: Find the strong coupling results using a
subgroup of the S-duality symmetry and use them to
construct an interpolating function.

We use two subgroups:

Z2: τ → −1/τ keeps fixed i

Z3: τ → (τ − 1)/τ keeps fixed eiπ/3.

Final results inside the fundamental domain of τ are
fairly insensitive to which of the two subgroups we
use.

Since the S-duality transformation induces a
θ-dependent strong coupling expansion, the final
interpolating function acquires a θ-dependence.



Results of interpolation:

1. The ratios δ2/δ0 and δ4/δ0 remain almost constant
over the whole fundamental domain of τ .
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– given by one loop results.

The estimates for δ2/δ0 and δ4/δ0 at any τ deviates
from these values by less than 1%.

⇒ all the physically allowed ∆m’s lie within a narrow
band around a straight line in the space of the ∆m’s.
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Note: For SU(4) the line seems to miss the corner

– could be either due to inadequacy of our approach
at large N or still existing numerical errors in the BRV
analysis.

We shall now describe the actual values of ∆0 for
different values of τ .



Result for SU(2)
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– results consistent with BRV bound.



Final summary (with error bars) for estimated values
of ∆m’s at τ = i and τ = eiπ/3:
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Note: The errors are only along the green dashed line.

lower/upper error bar: average 2/3 loop result.

BRV conjecture is alive both at τ = i and τ = eiπ/3.



Generalization

1. This method has also been used to compute
various physical quantities in the large N limit of SYM
theories using AdS/CFT, taking ’t Hooft coupling as
the interpolation parameter.

— gives good agreement with exact results where the
latter are known.

2. This method has also been used in other physical
problems where the behaviour of a function is known
at the two ends.

– good agreement with numerical results.

3. In some cases the interpolation method itself
requires slight generalization.

e.g. we could take (F− Fm,n) for some fixed m,n and
begin the whole process again.


