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F-theory Compactifications with additional U(1)’s

MOTIVATION



Why F-theory Compactification?



Why F-theory Compactification?

[ Domain of string theory landscape with promising particle physics ]

e Focus D=4 N=1 SUSY GUT'’s [SU(5), SO(10)]
w/chiral matter, Yukawa couplings 10 10 5,...

‘ GUT-model building in F-theory

e Moduli stabilization (fluxes) [Gukov,Vafa, Witten],...
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Why F-theory Compactification?

[ Domain of string theory landscape with promising particle physics

H

e Focus D=4 N=1 SUSY GUT'’s [SU(5), SO(10)]
w/chiral matter, Yukawa couplings 10 10 5,...

‘ GUT-model building in F-theory Iocal:[Donagi,Wijnholt;Beasley,Heckman, Vafa;

Review: Heckman,...]
Global: [Ma,rsa,no Saulina,Schafer-Nameki;
Blumenhagen,Grimm,Jurke,Weigand;...
M.C.,Halverson,Garcia-Etxebarria;...]

[ Conceptual: geometric description at finite string coupling ]

[ Vafa; Witten;...]
e F-theory via finite coupling Type I|IB string theory:
Consistent set-up of back-reacted seven-branes
Non-perturbative coupling regions on non-Calabi-Yau geometry

e F-theory via Geometry:
Globally defined elliptically fibered Calabi-Yau manifold



Why Abelian Symmetries in F-theory?

[ Particle physics: important ingredient of Beyond Standard Model Physics ]

e Light U(1) gauge bosons: Z’-physics, NMSSM, U(1),,, ...
* Massive (Stlickelberg) U(1) gauge bosons: low energy global symmetry

- selection rules (proton decay; R-parity violation; neutrino masses...)

Multiple U(1)’s desirable



Why Abelian Symmetries in F-theory?

[ Particle physics: important ingredient of Beyond Standard Model Physics ]

e Light U(1) gauge bosons: Z’-physics, NMSSM, U(1),,, ...
* Massive (Stlickelberg) U(1) gauge bosons: low energy global symmetry

- selection rules (proton decay; R-parity violation; neutrino masses...)

Multiple U(1)’s desirable

[ Conceptual: new types of elliptic fibrations ]

e Related to Abelian Mordell-Weil group of elliptic fibrations

. . Torsion part: [Morrison,Vafa;
=) torsion part studied Aspinwall Morrison:...]

w/free part less understood (global issues)  For toric K3: [Grassi,Perduca]

e Few systematic studies in contrast to non-Abelian groups
Non-Abelian: [Kodaira;Tate;
Morrison,Vafa;Bershadsky et al.;...]



Outline & Summary of the talk

|. Construction of elliptically fibered Calabi-Yau manifolds w/
rank 2 Mordell-Weil (MW) group
Il. Determination of matter representations and multiplicity in D=6 and D=4
lll. First construction of G,-fluxes on Calabi-Yau four-folds with rk=2 MW-group
V. Construction of explicit U(1) x U(1) and SU(5)xU(1)xU(1) w/spectra & chirality



Outline & Summary of the talk

|. Construction of elliptically fibered Calabi-Yau manifolds w/
rank 2 Mordell-Weil (MW) group
Il. Determination of matter representations and multiplicity in D=6 and D=4
lll. First construction of G,-fluxes on Calabi-Yau four-folds with rk=2 MW-group
V. Construction of explicit U(1) x U(1) and SU(5)xU(1)xU(1) w/spectra & chirality

[ Two-fold advances: Geometry & M-theory/F-theory duality ]

|. Geometry: in D=6 determines all matter representations and multiplicity
in D=4 G, fluxes & some of matter surfaces identified=> some chiralities
ll. M-theory/F-theory duality in D=3: constraints on G, Chern-Simons terms determine
- all chiral indices (tested against geom. calc.)

- confirm cancellation of all anomalies



The Type |IB perspective

F-THEORY HIGHLIGHTS



The Type |IB perspective

F-THEORY HIGHLIGHTS

[At Strings’12: D-instantons in F-theory;, Heterotic M-theory perspective]
[M.C.,Donagi,Halverson,Marsano]



F-theory via Type lIB: basic ingredients

* F-theory is a geometric, SL(2, Z) invariant formulation of Type IIB string

theory: invariant geometric object is two-torus T?(t) [Vafa]

* Modular parameter tof T(1): 7 = Cy + z'gs_l Type |IB axion-dilaton
(SL(2, Z) = S-duality)

* T?(t)-fibration over a base space B:

T(2)

Weierstrass parameterization:
2 _ 3 4 6
y =x"+ fxz" + gz

f, g- function fields on B
[z:x:y] homog. coords on P?(1,2,3)



F-theory via Type lIB: basic ingredients

F-theory is a geometric, SL(2, Z) invariant formulation of Type IIB string

theory: invariant geometric object is two-torus T?(t) [Vafa]
T :

* Modular parameter tof T(1): 7 = Cy + z'gs_l Type |IB axion-dilaton
(SL(2, Z) = S-duality)
* T?(t)-fibration over a base space B:

Weierstrass parameterization:

y2 _ 213'3 —|—f£EZ4 —|—gZG

7-branes

non-perturbative regime:
g oo 4m singular T(1)




F-theory via Type IIB: basic ingredients

» Total space of T%(t)-fibration: singular elliptic Calabi-Yau manifold X
D=4, N=1 vacua: fourfold X, [D=6, N=1 vacua: threefold X,]
e X-singularities encode complicated set-up of intersecting 7-branes:
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F-theory via Type IIB: basic ingredients

» Total space of T%(t)-fibration: singular elliptic Calabi-Yau manifold X
D=4, N=1 vacua: fourfold X [D=6, N=1 vacua: threefold X]
e X-singularities encode complicated set-up of intersecting 7-branes:

Matter in codim.
twoin B [Katz,Vafa]
(intersecting 7-branes)

Non-Abelian gauge
theory (ADE...) in codim.
onein B S

(7-branes)

G,-flux at intersection
induces chiral 4D matter

Yukawa couplings
in codim. three in B

pt=5NS"NSs"




Constructing elliptic fibrations with rank two Mordell-Weil groups

U(1)XU(1) SYMMETRY IN F-THEORY



MW-group of rational sections & U(1)’s
4D Abelian gauge fields arise from classical Kaluza-Klein-reduction of C,
Cs = APwg D i;lzwi + Arm\wm

(1,1)-forms on X Cartans of non-  (1)-gauge fields
Abelian group



MW-group of rational sections & U(1)’s
4D Abelian gauge fields arise from classical Kaluza-Klein-reduction of C,
Cs = APwg D i;lzwi + Arm\wm

(1,1)-forms on X Cartans of non-  (1)-gauge fields
Abelian group

[ Construction of (1,1)-form w,, via rational sections J

1 R
1. Rational point Q on elliptic curve E with zero point P g/
* issolution [z4:Xq:Yq] infield K of Weierstrass form /_/\

2 3 4 §
y: =x"+ fxz" + gz /p</
e Rational points form group (addition) on E /\
E

» [MordeII-WeiI group of rational points}

P+Q+R=0
[wikipedia.org

2. Qinduces rational section 5 : B — X of the fibration

(1,1)-form w,, Poincaré dual to divisor class SQ (related to §Qvia Shioda map)



Construction of elliptic curve with rk(MW)=2

[M.C., Klevers,Piragua]
[ Elliptic curve E with two rational points Q, R ]

related work:[ Borchman, Mayrhofer,Weigand]
rkMW]=1: [Morrison,Park; Mayrhofer,Palti,Weigand]



Construction of elliptic curve with rk(MW)=2

[M.C., Klevers,Piragua]
[ Elliptic curve E with two rational points Q, R ]

Consider line bundle M=0O(P+Q+R) of degree 3 on E (non-generic cubic in P?)

‘ natural representation as hypersurface p=0 in del Pezzo dP,

2.2 2 22) 2

p:u(slu e1e; + sguveleg + 83?}263 + 85”(1/(1)6%82 + Ssgvweeg + sgw ey ) + s7v wes + sng261

[u:v:w:e,:e,] -homogeneous coordinates of dP,

(blow-up of P2w/ [u":v":w’] at 2 points: u’=ue,e,, v'=ve,,w’=we,)

related work:[ Borchman, Mayrhofer,Weigand]
rkMW]=1: [Morrison,Park; Mayrhofer,Palti,Weigand]



Construction of elliptic curve with rk(MW)=2

[M.C., Klevers,Piragua]
[ Elliptic curve E with two rational points Q, R ]

Consider line bundle M=0O(P+Q+R) of degree 3 on E (non-generic cubic in P?)

- natural representation as hypersurface p=0 in del Pezzo dP,

pzu(slu%%eg + sguveleg -+ 83v26§ + 85’(1/(1)6%62 + Sgrwe; ey + 58w2e%) + 571)21062 -+ sng261

[u:v:w:e,:e,] -homogeneous coordinates of dP,
(blow-up of P2w/ [u":v":w’] at 2 points: u’=ue,e,, v'=ve,,w’=we,)
u v w e e
P: EsNp=|[—sg:sg:1:1:0],

Q: ExNp=[—-s7:1:83:0:1],
R: DyNp=[0:1:1:—s7:389].

Points represented by intersections of

different divisors in dP, with p




Classification of dP, elliptic fibrations

[M.C., Klevers, Piragua,; M.C.,Grassi,Klevers,Piragua]

Ambient space: dP; —— dPy(S7,So)

— dP, fibration determined by J

two divisors S;and S, (loci of 5,=0,5,=0) e

Ecdp, —— X

] __ sections_
— cutsout E indP, $p,50, SR

— coefficients s; in CY-equation get lifted B
to sections of the base B (only s,,s, independent)

— coordinates [u:v:w:e;:e,] lifted to sections

Calabi-Yau hypersurface X:



Classification of dP, elliptic fibrations

[M.C., Klevers, Piragua,; M.C.,Grassi,Klevers,Piragua]

Ambient space: dP; —— dPy(S7,So)

— dP, fibration determined by J

two divisors S;and S, (loci of 5,=0,5,=0) e

Ecdp, —— X

] _ sections_
— cutsout E indP, $p,50, SR

— coefficients s; in CY-equation get lifted B
to sections of the base B (only s,,s, independent)

— coordinates [u:v:w:e;:e,] lifted to sections

Calabi-Yau hypersurface X:

Birational map to Weierstrass fibration explicitly worked out



Classification of dP, elliptic fibrations

Construction of general elliptic fibrations:

section bundle section bundle
u | O(H — By — B2+ Sy + [Kg]) si | OB[KR'] =S — S)
v/ OH — By, + Sy — S7) So O(2[K3'] — So)
w' O(H — Ey) S3 O([Kz' + S — Sy)
€1 O(E)) S5 O(2K3'] — S7)
es O(E,) 56 O(K5")
r > S7 0(87)
— CY-condition: &, and Sofixed S8 O([K3Z' + Sy — S7)
- »Sg O(Sy)

Engineer non-Abelian groups: make s. non-generic

Can apply to toric cases w/ twoU(1)’s

[Bonetti,Braun,Grimm,Hohenegger;Borchmann,Mayrhofer,Palti,Weigand;
Braun,Grimm,Keitel ]



Classification of dP, elliptic fibrations
All topologically distinct D=6 & D=4 vacua for fixed base B. Example:

1. B=P3, X generic [all sisexist, generic]: U(1) x U(1)

57 — n7Hp3
89 — nng3 >

0
0 2 4 n,6 8

2. B=P3, X non-generic [sisrealize SU(5) at t=0]: SU(5) x U(1) x U(1)

& Ng o

ANg o

N

[M.C., Klevers,Piragua]

Can construct and study all these CYs explicitly
(no restriction to toric hypersurfaces seems necessary)



Codimension two singularities of dP,-elliptic fibrations

MATTER U(1)XU(1) F-THEORY VACUA



Matter representations

[M.C.,Klevers,Piragua]
related work:[ Borchman, Mayrhofer,Weigand ]

 Matter in F-theory arises from a co-dimension two singularities in B

 Singular fiber resolved into reducible curves E=c,+c w/ €;.C =2

mat
- M2-branes wrapping isolated P! in reducible fiber)

Cmat

(Cmat

Original singular fiber —> < |solated matter curve
(marked by zero section S;)

Advances in higher co-dimension singularities:.[Esole,Yau]..,[ Lawrie,Schéfer-Nameki]
Recent advances via deformations of singularities: [Halverson,Grassi,Shaneson]



Charged matter of Type |

Charge formula:

g1 =(Sg—95pP) Ctmat q2=(Sr—SP) - Cmat
Strategy: look for collisions of rational sections with singularities in
Weierstrass fibration (WSF)

e om



Charged matter of Type |

Charge formula:
q1 = (SQ - SP) " Cmat g2 = (SR — SP) * Cmat

Strategy: look for collisions of rational sections with singularities in
Weierstrass fibration (WSF)

O ()

List of charged matter representations

Representatlon Collision pattern

l.
i. (94,9,)=(1,0) Q2> WS-singularity @Q ’
ii. (94,9,)=(0,1) R—> WS-singularity * g !
iii. (q,,9,)=(1,1) Q,R 2 WS-singularity @R ?
iii.
h Q



Charged matter of Type Il

Strategy: look for loci in B where the sections are ill-defined
P: EsNp=|—s9g:83:1:1:0], Q: E1Np=|—s7:1:53:0:1],
R: Dy,Np=1[0:1:1:—57:59].

sections no longer points in E, wrap entire P! in smooth X



Charged matter of Type Il

Strategy: look for loci in B where the sections are ill-defined
P: EsNp=|—s9g:83:1:1:0], Q: E1Np=|—s7:1:53:0:1],
R: Dy,Np=1[0:1:1:—57:59].

sections no longer points in E, wrap entire P! in smooth X

[ List of charged matter representations ]

Representation lll-defined section

iv./

Q Cmat

iv. (q,,0,)=(-1,1) Q at s;=5,=0
v. (94,9,)=(0,-2) R at s,=54=0

vi.(q,,9,)=(-1,-2) zero section P
at sg=54=0



Summary of Matter Representations

U(l) x U(1)

Type | (1,0) (0,1) (1,-1)

Type I (—1,1) (0,2) (—1,-2)




Summary of Matter Representations

U(l) x U(1)

Type | (1,0) (0,1) (1,-1)

Type Il | (-1.1)(0.2) (-1,-2)

X non-generic =2 realize SU(5) x U(1) x U(1)
Apply analogous techniques to determine matter representation



Summary of Matter Representations

U(l) x U(1)

Type | (1,0) (0,1) (1,-1)

Type I (—1,1) (0,2) (—1,-2)

X non-generic =2 realize SU(5) x U(1) x U(1)
Apply analogous techniques to determine matter representations

Specific example: w/ SU(5) at t=0




Summary of Matter Representations

U(l) x U(1) SU(5) x U(1) x U(1)

Type | (1,0) (0,1) (1,=1) | (5,=2,0) (5,2,0) (5,—2,—1) | €

Type Il | (-1 (0.2) (-1,.-2) | (5.-2,1) (5.2.1) (10,~4.0)

X non-generic =2 realize SU(5) x U(1) x U(1)
Apply analogous techniques to determine matter representation

Specific example: w/ SU(5) at t=0




Matter multiplicities

MATTER SPECTRUM IN 6D



6D matter multiplicities

[M.C.,Klevers,Piragua]

Matter multiplicities = number of points in codimension 2 matter loci in B

1. Matter of Type Il: simple complete intersection

5;=5,=0

Number of points = deg(s;)*deg(s;)

B



6D matter multiplicities

[M.C.,Klevers,Piragua]
Matter multiplicities = number of points in codimension 2 matter loci in B

1. Matter of Type Il: simple complete intersection B
—c — S;
5=5;=0 V]
Number of points = deg(s;)*deg(s;)
2. Matter of Type |I: opposite of complete intersections B
Described by prime ideals (8 polynomial equations) o .

Counting of points via resultant of polynomial system Type.ll



6D matter multiplicities

[M.C.,Klevers,Piragua]
Matter multiplicities = number of points in codimension 2 matter loci in B

1. Matter of Type Il: simple complete intersection B
S.
5;=5,;=0 V,j
Number of points = deg(s;) *deg(s;)
2. Matter of Type |I. opposite of complete intersections B
Described by prime ideals (8 polynomial equations) o .
Counting of points via resultant of polynomial system Type.ll

Vethod general! Can now apply to examples of

rk=1 MW [Morrison,Park;Mayrhofer,Palti,Weigand ]
rk=2 MW [Borchman,Mayrhofer,Weigand],...



6D matter spectrum & multiplicities

6D matter spectrum and multiplicities can be obtained over any base B

Example:  B=P? w/U(1) x U(1)
(91, 92) Multiplicity
| (1,0) | 54 — 1509 +n2 + (12 + ng) ny — 2n2
Typel 7 (0,1) 54 + 2 (6ng — ng + 6ny — n3)
(1,1) 54 + 12ng — 2n3 + (ng — 15) ny + n?
| (—1,1) ny (3 —ng + ny)
Typell 7 | (0,2) ngny
| (—1,-2) ng (3 + ng — ny)

Integers n,, ng specify all dP,-fibration over P2
Full spectrum and multiplicities also with SU(5)xU(1)x(1) group

Consistency check: spectrum found to cancel 6D anomalies!



Matter surfaces, G,-flux & 3D CS-terms

MATTER SPECTRUM IN 4D



4D matter spectrum

[M.C.,Grassi,Klevers,Piragua]
AD-matter representations the same as in 6D (all in the fiber)

4D matter chiralities = codimension two matter loci in B + G,-flux:
N

Geometry: I.Matter surfaces:

points in B, 2 matter curves Yg in B, Cmat —— | Cr
Type Il matter surfaces found l
Type | matter-hard

II. G,-flux: 2R

Construction of homology H‘</2’2) (X)

First construction of G,-flux with non-holomorphic zero-section



4D matter spectrum

[M.C.,Grassi,Klevers,Piragua]
AD-matter representations the same as in 6D (all in the fiber)

4D matter chiralities = codimension two matter loci in B + G,-flux:
RS TAS

Geometry: I.Matter surfaces:

points in B, = matter curves Xg in B, Cmat — |CR

/Type Il matter surfaces found l

Evaluate integrals  Type | matter-hard
Chiralindex | G,-flux: Sk

\ Construction of homology H‘(/QQ) (X)

First construction of G,-flux with non-holomorphic zero-section



Conditions for G,-flux in F-theory

G,-flux in F-theory = G,-flux in M-theory + extra conditions

N

M/F-theory duality in D=3

c.f., John Schwarz’s talk

As 3D theory of 11D SUGRA
reduced on X,

..

D=3, N=2 theory on Coulomb branch

4D massless chiral matter

,.,

c.f., Nati Seiberg’s talk

Match as quantum effective actions in IR
(Integrate out massive states: massive 4D matter, KK-states)



Conditions for G,-flux in F-theory

l. G, in M-theory: 3D Cherns-Simons terms are classical

A

CS—/ ~OupA*ANFP  Oup = G4 ANwa Awp
X4

D= basis of divisors on X,

Il. G, in F-theory (3D Coulomb branch):
some classical: 4D gaugings of RR-axions (GS) [Grimm,Kerstan,Palti,Weigand]
some exotic (set to zero) [Grimm,Savelli]
some loop- generated- massive fermions on 3D Coulomb branch +KK-states

zx )5 qagssien mCBm

qeR k
[Aharony,Hanany,Intriligator, Selberg, Strassler]



Conditions for G,-flux in F-theory

l. G, in M-theory: 3D Cherns-Simons terms are classical

CS—/ —OApA*ANFP  Oyup = GiANwa ANwp

A

X4
D= basis of divisors on X,
Il. G, in F-theory (3D Coulomb branch):
some classical: 4D gaugings of RR-axions (GS) [Grimm,Kerstan,Palti,Weigand]

some exotic (set to zero) [Grimm,Savelli]
some loop-generated: massive fermions on 3D Coulomb branch +KK-states

[ G,-conditions ]

Constrain G, in M-theory (I.) sothat 6,;,=0 for CS-terms that in F-
theory (Il.) are neither classically, nor one-loop generated

Nonzero 6,5 in turn determine all chiralities and all anomaly cancellations!
...[Grimm,Hayashi;M.C.,Grassi,Klevers,Piragua] [M.C.,Grimm,Klevers]



The full 4D spectrum

Example B=P3 w/ U(1) x U(1): most general solution for G,-flux
G4 = asng (4 — n7 + ny) H?B +4asHpSp + asHpo(3g) + asHpo(Sr) + a5S%

(q1,q2) 4D chiralities
(1,0) |2 [asnrno (4 —n7 + ng) + as (2n2 — (12 — ng) (8 — ng) — n7 (16 + ng))]
(0,1)  [zlasno (4 =n7+n9) (12 = ng) — as (n7 (8 = n7) + (12 — ng) (4 + 19))]
(1,1) |4 [2asno(d —n +n9)(12 — ng) — (a3 +as)(n? + nr(ng — 20) +2(12 — n9)(4 + ng))
(—1,1) + (ag — aq) n7 (44 ny — ng)
(0, 2) in7n9(—2a4 + a5(4 — n7 4+ ng))
(=1,-2) —Lng(ng — ng — 4)(as + 2a4 + as(nz = 2na))

All 4D anomalies cancelled;
Chiralities checked against Type Il matter geometric chirality calculations



The full 4D spectrum

Example B=P3 w/ U(1) x U(1): most general solution for G,-flux
G4 = asng (4 — n7 + ny) H?B +4asHpSp + asHpo(3g) + asHpo(Sr) + a5S%

(Q1, C]Q) 4D chiralities

(1,0)
(0,1)
(1,1)

lasnrng (4 — n7 4+ ng) + as (2n7 — (12 — ng) (8 — ng) — n7 (16 + ny)) ]

5 lasng (4 —n7 +n9) (12 — ng) — ay (n7 (8 — n7) + (12 — ng) (4 +ny))]

1 [2a5m9(4 — n7 + 19) (12 — ng) — (a3 + aa)(n + nr(ng — 20) + 2(12 — ng)(4 + no))]

(—1,1) + (ag — aq) n7 (44 ny — ng)
(0, 2) in7n9(—2a4 -+ 0,5(4 — N7 + ng))
(_17 _2) —inq(m—nq —4)(az + 2a4 + as(ny — 2nq))

Same methods for SU(5)xU(1)xU(1) applied:

G,-flux has 7 parameter; all 4D chiralities determined; anomalies checked,;

Chirality checked against Type Il matter geometric calculations



[ Summary J

e Systematic construction of elliptic fibrations with rk=2 MW-groups

* D=6: Matter spectrum and multiplicity for general B
U(1)xU(1) SU(5)xU(1)xU(1) - All Geometry
e D=4 Matter spectrum and chirality
Geometry: Matter surfaces for Type Il matter (Type | matter hard)

G,-flux constructed for entire class of vacua (w/fixed base)

D=3 M/F-theory duality: Thorough formulation of G,-flux conditions
(new CS-terms from charged KK-states)

Determine all chiralities (checked against geom. calc.)



[ Summary J

Systematic construction of elliptic fibrations with rk=2 MW-groups

D=6: Matter spectrum and multiplicity for general B

U(1)xU(1) SU(5)xU(1)xU(1) - All Geometry

D=4 Matter spectrum and chirality

Geometry: Matter surfaces for Type Il matter (Type | matter hard)

G,-flux constructed for entire class of vacua (w/fixed base)

D=3 M/F-theory duality: Thorough formulation of G,-flux conditions
(new CS-terms from charged KK-states)

Determine all chiralities (checked against geom. calc.)

{ Outlook J

* 4D: Generalization to other bases, SUSY,... # Phenomenology

 More U(1)’s.. #



Announce: Elliptic CY with rk(MW)=3

[M.C.,Klevers, Piragua, Peng Song] to appear

[ Elliptic curve E with three rational points Q, R, S ]

Line bundle M=0O(P+Q+R+S) of degree 4 on E (non-generic biquadric in P3)

‘ Generic E: Calabi-Yau Complete Intersection (defined
by two equations) in the blow-up of P3 at three points

-The birational map to the Welerstrass model worked out

==

-Elliptic fibration, classification
~ Work in progress

-Matter, Multiplicities...



