# Global F-Theory Compactifications with Higher Rank Abelian Symmetries

Mirjam Cvetič





# Global F-Theory Compactifications with Higher Rank Abelian Symmetries

# Mirjam Cvetič

arXiv:1303.6970 [hep-th]: M. C. Denis Klevers, Hernan Piragua

arXiv:1306.0236 [hep-th]: M. C. A. Grassi, D.Klevers, H. Piragua

arXiv:130n.nnnn [hep-th] (UPR-1251-T): M.C., D.Klevers, H. Piragua

Also:Xiv:1210.6034 [hep-th]: M. C., Thomas W. Grimm, D. Klevers





F-theory Compactifications with additional U(1)'s

## **MOTIVATION**

Domain of string theory landscape with promising particle physics

- Focus D=4 N=1 SUSY GUT's [SU(5), SO(10)] w/chiral matter, Yukawa couplings 10 10 5,...
- GUT-model building in F-theory

• Moduli stabilization (fluxes) [Gukov, Vafa, Witten],...

Domain of string theory landscape with promising particle physics

Focus D=4 N=1 SUSY GUT's [SU(5), SO(10)]
 w/chiral matter, Yukawa couplings 10 10 5,...

GUT-model building in F-theory Local: [Donagi, Wijnholt; Beasley, Heckman, Vafa; ... Review: Heckman,...]

Global: [Marsano,Saulina,Schäfer-Nameki; Blumenhagen,Grimm,Jurke,Weigand;... M.C.,Halverson,Garcia-Etxebarria;...]

Domain of string theory landscape with promising particle physics

- Focus D=4 N=1 SUSY GUT's [SU(5), SO(10)]
   w/chiral matter, Yukawa couplings 10 10 5,...
- GUT-model building in F-theory Local:[Donagi,Wijnholt;Beasley,Heckman,Vafa; ... Review: Heckman,...]

  Global: [Marsano,Saulina,Schäfer-Nameki;
  Blumenhagen,Grimm,Jurke,Weigand;...

Conceptual: geometric description at finite string coupling

[Vafa; Witten;...]

M.C., Halverson, Garcia-Etxebarria;...]

- F-theory via finite coupling Type IIB string theory:
   Consistent set-up of back-reacted seven-branes
   Non-perturbative coupling regions on non-Calabi-Yau geometry
- F-theory via Geometry:
   Globally defined elliptically fibered Calabi-Yau manifold

# Why Abelian Symmetries in F-theory?

Particle physics: important ingredient of Beyond Standard Model Physics

- Light U(1) gauge bosons: Z'-physics, NMSSM, U(1)<sub>PO</sub>, ...
- Massive (Stückelberg) U(1) gauge bosons: low energy global symmetry
  - selection rules (proton decay; R-parity violation; neutrino masses...)

Multiple U(1)'s desirable

# Why Abelian Symmetries in F-theory?

Particle physics: important ingredient of Beyond Standard Model Physics

- Light U(1) gauge bosons: Z'-physics, NMSSM, U(1)<sub>PQ</sub>, ...
- Massive (Stückelberg) U(1) gauge bosons: low energy global symmetry
  - selection rules (proton decay; R-parity violation; neutrino masses...)

Multiple U(1)'s desirable

Conceptual: new types of elliptic fibrations

Related to Abelian Mordell-Weil group of elliptic fibrations

torsion part studied

Torsion part: [Morrison, Vafa; Aspinwall, Morrison;...]

w/free part less understood (global issues)

For toric K3: [Grassi, Perduca]

Few systematic studies in contrast to non-Abelian groups

Non-Abelian: [Kodaira;Tate; Morrison,Vafa;Bershadsky et al.;...]

# Outline & Summary of the talk

- Construction of elliptically fibered Calabi-Yau manifolds w/ rank 2 Mordell-Weil (MW) group
- II. Determination of matter representations and multiplicity in D=6 and D=4
- III. First construction of G<sub>4</sub>-fluxes on Calabi-Yau four-folds with rk=2 MW-group
- IV. Construction of explicit U(1) x U(1) and SU(5)xU(1)xU(1) w/spectra & chirality

# Outline & Summary of the talk

- I. Construction of elliptically fibered Calabi-Yau manifolds w/ rank 2 Mordell-Weil (MW) group
- II. Determination of matter representations and multiplicity in D=6 and D=4
- III. First construction of G<sub>4</sub>-fluxes on Calabi-Yau four-folds with rk=2 MW-group
- IV. Construction of explicit U(1) x U(1) and SU(5)xU(1)xU(1) w/spectra & chirality

Two-fold advances: Geometry & M-theory/F-theory duality

- I. Geometry: in D=6 determines all matter representations and multiplicity in D=4  $G_4$  fluxes & some of matter surfaces identified  $\rightarrow$  some chiralities
- II. M-theory/F-theory duality in D=3: constraints on  $G_4 \rightarrow$  Chern-Simons terms determine
  - all chiral indices (tested against geom. calc.)
  - confirm cancellation of all anomalies

The Type IIB perspective

# F-THEORY HIGHLIGHTS

The Type IIB perspective

## F-THEORY HIGHLIGHTS

[At Strings'12: D-instantons in F-theory; Heterotic M-theory perspective]

[M.C.,Donagi,Halverson,Marsano]

• F-theory is a geometric,  $SL(2, \mathbf{Z})$  invariant formulation of Type IIB string theory: invariant geometric object is two-torus  $T^2(\tau)$  [Vafa]



- Modular parameter  $\tau$  of T<sup>2</sup>( $\tau$ ):  $\tau \equiv C_0 + ig_s^{-1}$  Type IIB axion-dilaton (SL(2, **Z**) = S-duality)
- $T^2(\tau)$ -fibration over a base space B:

Weierstrass parameterization:

$$y^2 = x^3 + fxz^4 + gz^6$$

f, g- function fields on B [z:x:y] homog. coords on **P**<sup>2</sup>(1,2,3)



• F-theory is a geometric,  $SL(2, \mathbf{Z})$  invariant formulation of Type IIB string theory: invariant geometric object is two-torus  $T^2(\tau)$  [Vafa]



- Modular parameter  $\tau$  of T<sup>2</sup>( $\tau$ ):  $\tau \equiv C_0 + ig_s^{-1}$  Type IIB axion-dilaton (SL(2, **Z**) = S-duality)
- $T^2(\tau)$ -fibration over a base space B:

Weierstrass parameterization:

$$y^2 = x^3 + fxz^4 + gz^6$$



7-branes non-perturbative regime:

$$g_s \rightarrow \infty$$
 singular  $T^2(\tau)$ 

- Total space of  $T^2(\tau)$ -fibration: singular elliptic Calabi-Yau manifold X D=4, N=1 vacua: fourfold  $X_4$  [D=6, N=1 vacua: threefold  $X_3$ ]
- X-singularities encode complicated set-up of intersecting 7-branes:



- Total space of  $T^2(\tau)$ -fibration: singular elliptic Calabi-Yau manifold X D=4, N=1 vacua: fourfold  $X_4$  [D=6, N=1 vacua: threefold  $X_3$ ]
- X-singularities encode complicated set-up of intersecting 7-branes:



- Total space of  $T^2(\tau)$ -fibration: singular elliptic Calabi-Yau manifold X D=4, N=1 vacua: fourfold  $X_4$  [D=6, N=1 vacua: threefold  $X_3$ ]
- X-singularities encode complicated set-up of intersecting 7-branes:



- Total space of T²(τ)-fibration: singular elliptic Calabi-Yau manifold X
   D=4, N=1 vacua: fourfold X
   [D=6, N=1 vacua: threefold X]
- X-singularities encode complicated set-up of intersecting 7-branes:



- Total space of T<sup>2</sup>(τ)-fibration: singular elliptic Calabi-Yau manifold X
   D=4, N=1 vacua: fourfold X
   [D=6, N=1 vacua: threefold X]
- X-singularities encode complicated set-up of intersecting 7-branes:



Constructing elliptic fibrations with rank two Mordell-Weil groups

# U(1)XU(1) SYMMETRY IN F-THEORY

## MW-group of rational sections & U(1)'s

4D Abelian gauge fields arise from classical Kaluza-Klein-reduction of C<sub>3</sub>

$$C_3 = A^B \omega_B \supset A^i \omega_i + A^m \omega_m$$
 (1,1)-forms on X Cartans of non-Abelian group U(1)-gauge fields

# MW-group of rational sections & U(1)'s

4D Abelian gauge fields arise from classical Kaluza-Klein-reduction of C<sub>3</sub>

$$C_3 = A^B \omega_B \supset A^i \omega_i + A^m \omega_m$$
 (1,1)-forms on X Cartans of non-Abelian group

Construction of (1,1)-form  $\omega_m$  via rational sections

- 1. Rational point Q on elliptic curve E with zero point P
  - is solution [z<sub>Q</sub>: x<sub>Q</sub>: y<sub>Q</sub>] in field K of Weierstrass form  $y^2 = x^3 + fxz^4 + gz^6$
  - Rational points form group (addition) on E



Mordell-Weil group of rational points



2. Q induces rational section  $\hat{s}_Q:\, B o X$  of the fibration

(1,1)-form  $\omega_{\rm m}$  Poincaré dual to divisor class  ${\sf S}_{\sf Q}$  (related to  $\hat{s}_Q$  via Shioda map)

## Construction of elliptic curve with rk(MW)=2

[M.C., Klevers, Piragua]

Elliptic curve E with two rational points Q, R

related work: [Borchman, Mayrhofer, Weigand]

rk[MW]=1: [Morrison,Park; Mayrhofer,Palti,Weigand]

# Construction of elliptic curve with rk(MW)=2

[M.C., Klevers, Piragua]

### Elliptic curve E with two rational points Q, R

Consider line bundle M=O(P+Q+R) of degree 3 on E (non-generic cubic in  $P^2$ )



natural representation as hypersurface p=0 in del Pezzo dP<sub>2</sub>

$$p = u(s_1u^2e_1^2e_2^2 + s_2uve_1e_2^2 + s_3v^2e_2^2 + s_5uwe_1^2e_2 + s_6vwe_1e_2 + s_8w^2e_1^2) + s_7v^2we_2 + s_9vw^2e_1$$

[u:v:w:e<sub>1</sub>:e<sub>2</sub>] -homogeneous coordinates of dP<sub>2</sub> (blow-up of P<sup>2</sup> w/ [u':v':w'] at 2 points: u'=ue<sub>1</sub>e<sub>2</sub>, v'=ve<sub>2</sub>,w'=we<sub>1</sub>)

related work: [Borchman, Mayrhofer, Weigand]

rk[MW]=1: [Morrison,Park; Mayrhofer,Palti,Weigand]

# Construction of elliptic curve with rk(MW)=2

[M.C., Klevers, Piragua]

### Elliptic curve E with two rational points Q, R

Consider line bundle M=O(P+Q+R) of degree 3 on E (non-generic cubic in  $P^2$ )



natural representation as hypersurface p=0 in del Pezzo dP<sub>2</sub>

$$p = u(s_1u^2e_1^2e_2^2 + s_2uve_1e_2^2 + s_3v^2e_2^2 + s_5uwe_1^2e_2 + s_6vwe_1e_2 + s_8w^2e_1^2) + s_7v^2we_2 + s_9vw^2e_1$$

[u:v:w:e<sub>1</sub>:e<sub>2</sub>] –homogeneous coordinates of dP<sub>2</sub>

(blow-up of  $P^2$  w/ [u':v':w'] at 2 points: u'=ue<sub>1</sub>e<sub>2</sub>, v'=ve<sub>2</sub>, w'=we<sub>1</sub>)

$$u v w e_1 e_2$$

$$P: E_2 \cap p = [-s_9: s_8: 1: 1: 0],$$

$$Q: E_1 \cap p = [-s_7:1:s_3:0:1],$$

$$P: E_2 \cap p = [-s_9 : s_8 : 1 : 1 : 0],$$

$$Q: E_1 \cap p = [-s_7 : 1 : s_3 : 0 : 1],$$

$$R: D_u \cap p = [0 : 1 : 1 : -s_7 : s_9].$$

Points represented by intersections of different divisors in dP2 with p

[M.C., Klevers, Piragua; M.C., Grassi, Klevers, Piragua]

#### I. Ambient space:

-  $dP_2$  fibration determined by two divisors  $S_7$  and  $S_9$  (loci of  $s_7$ =0, $s_9$ =0)



#### II. Calabi-Yau hypersurface X:

- cuts out E in dP<sub>2</sub>
- coefficients s<sub>i</sub> in CY-equation get lifted to sections of the base B (only s<sub>7</sub>,s<sub>9</sub> independent)
- coordinates [u:v:w:e<sub>1</sub>:e<sub>2</sub>] lifted to sections



[M.C., Klevers, Piragua; M.C., Grassi, Klevers, Piragua]

#### I. Ambient space:

-  $dP_2$  fibration determined by two divisors  $S_7$  and  $S_9$  (loci of  $s_7$ =0, $s_9$ =0)



#### II. Calabi-Yau hypersurface X:

- cuts out E in dP<sub>2</sub>
- coefficients s<sub>i</sub> in CY-equation get lifted to sections of the base B (only s<sub>7</sub>,s<sub>9</sub> independent)
- coordinates [u:v:w:e<sub>1</sub>:e<sub>2</sub>] lifted to sections

 $\hat{E} \subset dP_2 \longrightarrow X$ sections  $\hat{s}_P, \hat{s}_Q, \hat{s}_R$   $\downarrow$  B

Birational map to Weierstrass fibration explicitly worked out

Construction of general elliptic fibrations:

| section                                                                       | bundle                                           | section               | bundle                                                     |
|-------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|------------------------------------------------------------|
| u'                                                                            | $\mathcal{O}(H-E_1-E_2+\mathcal{S}_9+[K_B])$     | $s_1$                 | $\mathcal{O}(3[K_B^{-1}] - \mathcal{S}_7 - \mathcal{S}_9)$ |
| v'                                                                            | $\mathcal{O}(H-E_2+\mathcal{S}_9-\mathcal{S}_7)$ | $s_2$                 | $\mathcal{O}(2[K_B^{-1}] - \mathcal{S}_9)$                 |
| w'                                                                            | $\mathcal{O}(H-E_1)$                             | $s_3$                 | $\mathcal{O}([K_B^{-1}] + \mathcal{S}_7 - \mathcal{S}_9)$  |
| $e_1$                                                                         | $\mathcal{O}(E_1)$                               | $s_5$                 | $\mathcal{O}([2K_B^{-1}] - \mathcal{S}_7)$                 |
| $e_2$                                                                         | $\mathcal{O}(E_2)$                               | $s_6$                 | $\mathcal{O}([K_B^{-1}])$                                  |
| $s_7$                                                                         |                                                  |                       | $\mathcal{O}(\mathcal{S}_7)$                               |
| <ul> <li>CY-condition: <math>S_7</math> and <math>S_9</math> fixed</li> </ul> |                                                  | $s_8$                 | $\mathcal{O}([K_B^{-1}] + \mathcal{S}_9 - \mathcal{S}_7)$  |
|                                                                               |                                                  | $\longrightarrow s_9$ | $\mathcal{O}(\mathcal{S}_9)$                               |

Engineer non-Abelian groups: make s<sub>i</sub> non-generic

Can apply to toric cases w/ twoU(1)'s

[Bonetti,Braun,Grimm,Hohenegger;Borchmann,Mayrhofer,Palti,Weigand; Braun,Grimm,Keitel]

All topologically distinct D=6 & D=4 vacua for fixed base B. Example:

1.  $B=P^3$ , X generic [all s<sub>i</sub> exist, generic]: U(1) x U(1)

$$\mathcal{S}_7 = n_7 H_{\mathbb{P}^3}$$
  
 $\mathcal{S}_9 = n_9 H_{\mathbb{P}^3}$ 



2.  $B=P^3$ , X non-generic [ $s_i$  realize SU(5) at t=0]: SU(5) x U(1) x U(1)

$$s_1 = t^3 s'_1$$
  
 $s_2 = t^2 s'_2$   
 $s_3 = t^2 s'_3$   
 $s_5 = t s'_5$ 



Can construct and study all these CYs explicitly (no restriction to toric hypersurfaces seems necessary)

Codimension two singularities of dP<sub>2</sub>-elliptic fibrations

# MATTER U(1)XU(1) F-THEORY VACUA

# Matter representations

[M.C.,Klevers,Piragua] related work:[Borchman, Mayrhofer,Weigand]

- Matter in F-theory arises from a co-dimension two singularities in B
- Singular fiber resolved into reducible curves  $E=c_1+c_{mat}$  w/  $c_1.c_{mat}=2$  ( $c_{mat}$  M2-branes wrapping isolated  $P^1$  in reducible fiber)



Advances in higher co-dimension singularities:.[Esole,Yau]..,[Lawrie,Schäfer-Nameki]
Recent advances via deformations of singularities: [Halverson,Grassi,Shaneson]

## Charged matter of Type I

#### Charge formula:

$$q_1 = (S_Q - S_P) \cdot c_{mat}$$
  $q_2 = (S_R - S_P) \cdot c_{mat}$ 

Strategy: look for collisions of rational sections with singularities in Weierstrass fibration (WSF)



# Charged matter of Type I

#### Charge formula:

$$q_1 = (S_Q - S_P) \cdot c_{mat} \qquad q_2 = (S_R - S_P) \cdot c_{mat}$$

Strategy: look for collisions of rational sections with singularities in Weierstrass fibration (WSF)



#### List of charged matter representations

#### Representation

i. 
$$(q_1,q_2)=(1,0)$$

ii. 
$$(q_1,q_2)=(0,1)$$

iii. 
$$(q_1,q_2)=(1,1)$$

#### Collision pattern

Q → WS-singularity

R → WS-singularity

Q,R →WS-singularity





R

# Charged matter of Type II

Strategy: look for loci in B where the sections are ill-defined

$$P: E_2 \cap p = [-s_9: s_8: 1: 1: 0], Q: E_1 \cap p = [-s_7: 1: s_3: 0: 1],$$
  
 $R: D_u \cap p = [0: 1: 1: -s_7: s_9].$ 

sections no longer points in E, wrap entire P1 in smooth X

# Charged matter of Type II

Strategy: look for loci in B where the sections are ill-defined

$$P: E_2 \cap p = [-s_9: s_8: 1: 1: 0], Q: E_1 \cap p = [-s_7: 1: s_3: 0: 1],$$
  
 $R: D_u \cap p = [0: 1: 1: -s_7: s_9].$ 

sections no longer points in E, wrap entire P1 in smooth X

#### List of charged matter representations

#### Representation

iv. 
$$(q_1, q_2) = (-1, 1)$$

v. 
$$(q_1,q_2)=(0,-2)$$

$$vi.(q_1,q_2)=(-1,-2)$$

III-defined section

Q at 
$$s_3 = s_7 = 0$$

R at 
$$s_7 = s_9 = 0$$

zero section P at 
$$s_8 = s_9 = 0$$



 $c_{mat}$ 



 $U(1) \times U(1)$ 

Type I

(1,0) (0,1) (1,-1)

Type II

(-1,1) (0,2) (-1,-2)

 $U(1) \times U(1)$ 

Type I

(1,0) (0,1) (1,-1)

Type II

(-1,1) (0,2) (-1,-2)

X non-generic  $\rightarrow$  realize SU(5) x U(1) x U(1) Apply analogous techniques to determine matter representation

 $U(1) \times U(1)$ 

Type I

(1,0) (0,1) (1,-1)

Type II

(-1,1) (0,2) (-1,-2)

X non-generic  $\rightarrow$  realize SU(5) x U(1) x U(1)

Apply analogous techniques to determine matter representations

Type I

 $U(1) \times U(1)$ 

(1,0) (0,1) (1,-1)  $(\mathbf{5},-\frac{2}{5},0) (\mathbf{5},\frac{3}{5},0) (\mathbf{5},-\frac{2}{5},-1)$ 

 $SU(5) \times U(1) \times U(1)$ 

Type II

$$(-1,1) (0,2) (-1,-2) (5,-\frac{2}{5},1) (5,\frac{3}{5},1) (\overline{\mathbf{10}},-\frac{1}{5},0)$$

X non-generic  $\rightarrow$  realize SU(5) x U(1) x U(1)

Apply analogous techniques to determine matter representation

Specific example:

$$s_1 = t^3 s_1'$$
 $s_2 = t^2 s_2'$  w/ SU(5) at t=0
 $s_3 = t^2 s_3'$ 
 $s_5 = t s_5'$ 

Matter multiplicities

### MATTER SPECTRUM IN 6D

# 6D matter multiplicities

[M.C.,Klevers,Piragua]

#### Matter multiplicities = number of points in codimension 2 matter loci in B

1. Matter of Type II: simple complete intersection

$$s_i = s_j = 0$$



Number of points =  $deg(s_i)*deg(s_i)$ 

# 6D matter multiplicities

[M.C.,Klevers,Piragua]

В

Si

#### Matter multiplicities = number of points in codimension 2 matter loci in B

1. Matter of Type II: simple complete intersection

$$s_i = s_j = 0$$



2. Matter of Type I: opposite of complete intersections

Described by prime ideals (8 polynomial equations)

Counting of points via resultant of polynomial system



# 6D matter multiplicities

[M.C.,Klevers,Piragua]

Matter multiplicities = number of points in codimension 2 matter loci in B

1. Matter of Type II: simple complete intersection

Number of points =  $deg(s_i)*deg(s_i)$ 



2. Matter of Type I: opposite of complete intersections

Described by prime ideals (8 polynomial equations)

Counting of points via resultant of polynomial system



Method general! Can now apply to examples of

rk=1 MW [Morrison,Park;Mayrhofer,Palti,Weigand]

rk=2 MW [Borchman, Mayrhofer, Weigand],...

•

## 6D matter spectrum & multiplicities

6D matter spectrum and multiplicities can be obtained over any base B

| Example: | B= <b>P</b> <sup>2</sup> | w/U(1) x U(1)                                    |
|----------|--------------------------|--------------------------------------------------|
|          | $(q_1,q_2)$              | Multiplicity                                     |
|          | (1,0)                    | $54 - 15n_9 + n_9^2 + (12 + n_9)n_7 - 2n_7^2$    |
| Type I   | (0,1)                    | $54 + 2\left(6n_9 - n_9^2 + 6n_7 - n_7^2\right)$ |
| L        | (1,1)                    | $54 + 12n_9 - 2n_9^2 + (n_9 - 15)n_7 + n_7^2$    |
|          | (-1, 1)                  | $n_7 (3 - n_9 + n_7)$                            |
| Type II  | (0, 2)                   | $n_9n_7$                                         |
|          | (-1,-2)                  | $n_9\left(3+n_9-n_7\right)$                      |

Integers n<sub>7</sub>, n<sub>9</sub> specify all dP<sub>2</sub>-fibration over **P<sup>2</sup>** 

Full spectrum and multiplicities also with SU(5)xU(1)x(1) group

Consistency check: spectrum found to cancel 6D anomalies!

Matter surfaces, G<sub>4</sub>-flux & 3D CS-terms

### MATTER SPECTRUM IN 4D

## 4D matter spectrum

[M.C.,Grassi,Klevers,Piragua]

4D-matter representations the same as in 6D (all in the fiber)

4D matter chiralities = codimension two matter loci in B +  $G_4$ -flux:

$$\chi(\mathbf{R}) = -\frac{1}{4} \int_{\mathcal{C}_{\mathbf{R}}} G_4$$

#### Geometry: I.Matter surfaces:

points in  $B_2 \rightarrow \text{matter curves } \Sigma_{\mathbf{R}} \text{ in } B_3$ 

Type II matter surfaces found

Type I matter-hard

Construction of homology  $H_V^{(2,2)}(\hat{X})$ 

First construction of G<sub>4</sub>-flux with non-holomorphic zero-section



## 4D matter spectrum

[M.C.,Grassi,Klevers,Piragua]

4D-matter representations the same as in 6D (all in the fiber)

4D matter chiralities = codimension two matter loci in B +  $G_4$ -flux:

$$\chi(\mathbf{R}) = -\frac{1}{4} \int_{\mathcal{C}_{\mathbf{R}}} G_4$$

**Geometry:** I.Matter surfaces:

points in  $B_2 \rightarrow \text{matter curves } \Sigma_{\mathbf{R}} \text{ in } B_3$ 

 $c_{mat}$  —

 $\Sigma_{\mathbf{R}}$ 

Type II matter surfaces found

Evaluate integrals Type I matter-hard

Chiral index

II. G<sub>4</sub>-flux:

Construction of homology  $H_V^{(2,2)}(\hat{X})$ 

First construction of G<sub>4</sub>-flux with non-holomorphic zero-section

## Conditions for G<sub>4</sub>-flux in F-theory

 $G_4$ -flux in F-theory =  $G_4$ -flux in M-theory + extra conditions

 $_{c.f., John Schwarz's talk}$  M/F-theory duality in D=3



c.f., Nati Seiberg's talk

Match as quantum effective actions in IR (Integrate out massive states: massive 4D matter, KK-states)

## Conditions for G<sub>4</sub>-flux in F-theory

I. G₄ in M-theory: 3D Cherns-Simons terms are classical

$$S_{\text{CS}}^{3D} = \int \frac{1}{2} \Theta_{AB} A^A \wedge F^B \qquad \Theta_{AB} = \int_{\hat{X}_4} G_4 \wedge \omega_A \wedge \omega_B$$

 $D_A$ = basis of divisors on  $X_4$ 

II.  $G_4$  in F-theory (3D Coulomb branch):

some classical: 4D gaugings of RR-axions (GS)

[Grimm,Kerstan,Palti,Weigand]

some exotic (set to zero)

[Grimm,Savelli]

some loop-generated: massive fermions on 3D Coulomb branch +KK-states

$$\Theta_{AB}^{\text{loop}} = \frac{1}{2} \sum_{\mathbf{R}} \chi(\mathbf{R}) \sum_{q \in \mathbf{R}} \sum_{k} q_A q_B \text{sign}(m_{CB} + \frac{k}{r})$$

[Aharony, Hanany, Intriligator, Seiberg, Strassler]

•••

## Conditions for G<sub>4</sub>-flux in F-theory

G<sub>4</sub> in M-theory: 3D Cherns-Simons terms are classical

$$S_{\text{CS}}^{3D} = \int \frac{1}{2} \Theta_{AB} A^A \wedge F^B \qquad \Theta_{AB} = \int_{\hat{X}_4} G_4 \wedge \omega_A \wedge \omega_B$$

 $D_A$ = basis of divisors on  $X_4$ 

II.  $G_4$  in F-theory (3D Coulomb branch):

some classical: 4D gaugings of RR-axions (GS) [Grimm, Kerstan, Palti, Weigand]
some exotic (set to zero) [Grimm, Savelli]

some loop-generated: massive fermions on 3D Coulomb branch +KK-states

#### G<sub>4</sub>-conditions

Constrain  $G_4$  in M-theory (I.) so that  $\theta_{AB}$ =0 for CS-terms that in F-theory (II.) are neither classically, nor one-loop generated

Nonzero  $\theta_{AB}$  in turn determine all chiralities and all anomaly cancellations! ...[Grimm, Hayashi; M.C., Grassi, Klevers, Piragua] [M.C., Grimm, Klevers]

### The full 4D spectrum

Example  $B=P^3$  w/ U(1) x U(1): most general solution for  $G_4$ -flux

$$G_4 = a_5 n_9 (4 - n_7 + n_9) H_B^2 + 4a_5 H_B S_P + a_3 H_B \sigma(\hat{s}_Q) + a_4 H_B \sigma(\hat{s}_R) + a_5 S_P^2$$

| $(q_1, q_2)$ | 4D chiralities                                                                                                                                                                             |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (1,0)        | $\frac{1}{4} \left[ a_5 n_7 n_9 \left( 4 - n_7 + n_9 \right) + a_3 \left( 2n_7^2 - (12 - n_9) \left( 8 - n_9 \right) - n_7 \left( 16 + n_9 \right) \right) \right]$                        |  |
| (0,1)        | $\frac{1}{2} \left[ a_5 n_9 \left( 4 - n_7 + n_9 \right) \left( 12 - n_9 \right) - a_4 \left( n_7 \left( 8 - n_7 \right) + \left( 12 - n_9 \right) \left( 4 + n_9 \right) \right) \right]$ |  |
| (1,1)        | $\frac{1}{4} \left[ 2a_5 n_9 (4 - n_7 + n_9)(12 - n_9) - (a_3 + a_4)(n_7^2 + n_7(n_9 - 20) + 2(12 - n_9)(4 + n_9)) \right]$                                                                |  |
| (-1,1)       | $\frac{1}{4} (a_3 - a_4) n_7 (4 + n_7 - n_9)$                                                                                                                                              |  |
| (0,2)        | $\frac{1}{4}n_7n_9(-2a_4 + a_5(4 - n_7 + n_9))$                                                                                                                                            |  |
| (-1, -2)     | $-\frac{1}{4}n_9(n_7-n_9-4)(a_3+2a_4+a_5(n_7-2n_9))$                                                                                                                                       |  |

#### All 4D anomalies cancelled;

Chiralities checked against Type II matter geometric chirality calculations

### The full 4D spectrum

Example B=P<sup>3</sup> w/U(1) x U(1): most general solution for  $G_4$ -flux

$$G_4 = a_5 n_9 (4 - n_7 + n_9) H_B^2 + 4a_5 H_B S_P + a_3 H_B \sigma(\hat{s}_Q) + a_4 H_B \sigma(\hat{s}_R) + a_5 S_P^2$$

| $(q_1, q_2)$ | 4D chiralities                                                                                                                                                                             |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (1,0)        | $\frac{1}{4} \left[ a_5 n_7 n_9 \left( 4 - n_7 + n_9 \right) + a_3 \left( 2n_7^2 - (12 - n_9) \left( 8 - n_9 \right) - n_7 \left( 16 + n_9 \right) \right) \right]$                        |  |
| (0,1)        | $\frac{1}{2} \left[ a_5 n_9 \left( 4 - n_7 + n_9 \right) \left( 12 - n_9 \right) - a_4 \left( n_7 \left( 8 - n_7 \right) + \left( 12 - n_9 \right) \left( 4 + n_9 \right) \right) \right]$ |  |
| (1,1)        | $\frac{1}{4} \left[ 2a_5 n_9 (4 - n_7 + n_9)(12 - n_9) - (a_3 + a_4)(n_7^2 + n_7(n_9 - 20) + 2(12 - n_9)(4 + n_9)) \right]$                                                                |  |
| (-1,1)       | $\frac{1}{4} (a_3 - a_4) n_7 (4 + n_7 - n_9)$                                                                                                                                              |  |
| (0,2)        | $\frac{1}{4}n_7n_9(-2a_4 + a_5(4 - n_7 + n_9))$                                                                                                                                            |  |
| (-1, -2)     | $-\frac{1}{4}n_9(n_7-n_9-4)(a_3+2a_4+a_5(n_7-2n_9))$                                                                                                                                       |  |

#### Same methods for SU(5)xU(1)xU(1) applied:

G<sub>4</sub>-flux has 7 parameter; all 4D chiralities determined; anomalies checked; Chirality checked against Type II matter geometric calculations

### Summary

- Systematic construction of elliptic fibrations with rk=2 MW-groups
- D=6: Matter spectrum and multiplicity for general B
   U(1)xU(1) SU(5)xU(1)xU(1) All Geometry
- D=4 Matter spectrum and chirality

Geometry: Matter surfaces for Type II matter (Type I matter hard)

G<sub>4</sub>-flux constructed for entire class of vacua (w/fixed base)

D=3 M/F-theory duality: Thorough formulation of  $G_4$ -flux conditions

(new CS-terms from charged KK-states)

Determine all chiralities (checked against geom. calc.)

### Summary

- Systematic construction of elliptic fibrations with rk=2 MW-groups
- D=6: Matter spectrum and multiplicity for general B
   U(1)xU(1) SU(5)xU(1)xU(1) All Geometry
- D=4 Matter spectrum and chirality

Geometry: Matter surfaces for Type II matter (Type I matter hard)

G<sub>4</sub>-flux constructed for entire class of vacua (w/fixed base)

D=3 M/F-theory duality: Thorough formulation of  $G_4$ -flux conditions

(new CS-terms from charged KK-states)

Determine all chiralities (checked against geom. calc.)

#### Outlook

- 4D: Generalization to other bases, SUSY,... Phenomenology
- More U(1)'s..



## Announce: Elliptic CY with rk(MW)=3

[M.C.,Klevers, Piragua, Peng Song] to appear

Elliptic curve E with three rational points Q, R, S

Line bundle M=O(P+Q+R+S) of degree 4 on E (non-generic biquadric in  $P^3$ )



Generic E: Calabi-Yau Complete Intersection (defined by two equations) in the blow-up of **P**<sup>3</sup> at three points

-The birational map to the Weierstrass model worked out

-Elliptic fibration, classification

-Matter, Multiplicities...

Work in progress