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What is hydrodynamics?

» Universal description of the long wavelength degrees of freedom
> Applies equally well at macroscopic and microscopic scales

» Current most relevant example: quark-gluon-plasma produced at
RHIC/LHC

Long wavelength description = gradient expansion = expansion in the
number of derivatives

Question: What is the nature of such an expansion?
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Introduction
Hydrodynamics:

1. Concentrates on the dynamics of the energy-momentum tensor T,

2. Amounts to the assumption that T, is wholly expressed through
the flow velocity u*, energy density and pressure (E = 3p for
conformal fluids)

3. Arrange all possible terms by the number of derivatives of u*

4. Coefficients of these terms = transport coefficients characteristic of
the underlying microscopic theory

5. Generalized Navier-Stokes equation is just 9, T =0
N = 4 SYM hydrodynamics:
T o= (T (" + duru”) = 2(x T)3 0" +

rescaled

perfect fluid viscosity

14 v 1 v v 14
+ (7 T?) <Iog2T2‘; +2Th) + (2 —log2) <3T2“C + Ty + The >)

second order hydrodynamics

Bhattacharya, Hubeny, Minwalla, Rangamani
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Question 1

What is the nature of the gradient expansion?

» Suppose we include terms with more and more derivatives
(dissipation)

» Is the resulting series asymptotic (zero radius of convergence)?

» What physics is (quantitatively) responsible for the lack of
convergence?

Analogy: perturbative expansion and instanton effects...

Question 2
If the hydrodynamic series is only asymptotic, is it Borel

summable?

» What are the singularities on the Borel plane and what is their
physical interpretation?

These questions are very interesting but also quite theoretical...
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Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

> In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

6 /18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

6 /18



Question 3
Is there any practical motivation for looking at high order

hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

6 /18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

> In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

6 /18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

> In our previous work [Heller, RJ, Witaszczyk] we considered the

evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate

C . ‘Small’ initial data
initial data

6 /18



Questi

on 3

Is there any practical motivation for looking at high order
hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

> In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate

initial data

0.030)

oo2s|
002)
oors|
oo

04 06 08 10 12 14 16

‘Small’ initial data

o
o1

6 /18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

» Lublinsky, Shuryak proposed a resummation based on linearized

hydrodynamic modes from AdS/CFT with phenomenological
motivation

> In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate N
'8 . n . intermed ‘Small’ initial data
initial data

tiw
i

g

1

00x)
oo2s|
002)
oors|
oo

1
04 06 08 10 12 14 16 ''d

6 /18



Final motivation:

7 /18



Final motivation:

N =4 SYM provides for us (through the AdS/CFT
correspondence) the only physical system for which one can

systematically compute high orders of the gradient expansion and
examine the above questions
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» One starts with a boosted planar black hole representing a plasma
system moving with uniform velocity u* and with temperature T

» One promotes u* and T to slowly varying functions — one has to
correct the metric iteratively in an expansion in gradients

» At each order one looks for a (regular) solution of

(Linear differential operator)[ng’;)] = RHS[{g;(i’B}OS'SH—l]

» Rather complicated to perform the expansion analytically:
e in general carried out to 2" order (2" order viscous
hydrodynamics)

e in boost-invariant case up to 3™ order
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Method: Fluid/gravity duality

» At each order we have a set of coupled linear ODE’s

» Very simple to solve numerically (with very high precision!)

Much simpler than normal numerical relativity which involves solving
nonlinear PDE's!!

Simplicity /our practical motivation —> consider the
boost-invariant setting
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Boost-invariant flow

Bjorken '83

Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

» In a conformal theory, le‘ =0 and 0, T"” = 0 determine, under the
above assumptions, the energy-momentum tensor completely in
terms of a single function (7), the energy density at mid-rapidity.

> The assumptions of symmetry fix uniquely the flow velocity
» Gradient expansion coincides with an expansion in
1

T

Wi

» A new combination of transport coefficients appears at each order in
the above expansion
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Large 7 behaviour of ¢(7)

» Structure of the analytical result for large 7:

1 2 1 1+2log2 1 —3+272+24log2 —24log?2 1
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T3 223iT 123 73 324 .2:3: T3

RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ, Heller; Heller
> Leading term — perfect fluid behaviour
second term — 15 order viscous hydrodynamics

third term — 279 order viscous hydrodynamics
fourth term — 37 order viscous hydrodynamics...

e(r) =

» In general:

()= %

n:27-3

» At each order new transport coefficients start to contribute to ¢,...
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» By iteratively solving numerically the linear ODE's from fluid /gravity
duality, we obtained 240 coefficients in the gradient expansion

e chief complication — generate the r.h.s. of the

242 equations
e(r) = Z = e to get to so high orders we need very high
=212 precision computations

e first couple of orders — easy and fast
» Introduce u = 1/7%/3
242

e(u) = Z equ”
n=2

Convergence
(g

14

Zero radius of convergence
Asymptotic series...
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Borel transform

» Define the Borel transform

> If there are no singularities on the real axis, a Borel resummation of
the asymptotic series can be obtained from the integral

oo
Eresum(U) = / e %&(su) ds where y = 773
0

» £(u) has only a finite radius of convergence. In order to locate
singularities in the Borel plane, we perform a symmetric Pade
approximation...

» Look at poles = zeroes of the denominator of the Pade
approximant...
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» Branch points set the radius
of convergence of the Borel
transform

» Apparently no poles on the
real axis!
Borel resummation should be
possible...

What is the physical interpretation of the branch cut
singularities?
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Im & inverse Borel transform

* L resum(T) = / e~z (¢/7) dc
AR L : 0
= S 0 T 5o Redo > The pole at the edge of the
~..... cut (¢ = 4.12065 + 4.67895 /)
-10 Lo will contribute as
20 ° 2
. o—(4.12065+4.67895 /) 73

» This is exactly the first lowest non-hydrodynamic quasi-normal

mode!
> It is simply related to the scalar QNM of the planar black hole
through RJ, Peschanski

3
—i(3.1195 — 2.7467 /)/ T(r)dr = —i=(3.1195 — 2.7467 i)T%
N 2

planar BH QNM

1
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What is the interpretation of the whole branch cut?
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» The late time geometry is an evolving black hole deformed by

>

>

viscous corrections (first gradient terms in the fluid/gravity duality)
This modification of the geometry generates a nontrivial power-law
modification of the quasi-normal mode which is
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High order viscous hydrodynamic expansion encodes the fine details
of the first non-hydrodynamic degrees of freedom
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Conclusions

» We calculated the gradient expansion to very high orders
» The hydrodynamic expansion has zero radius of convergence

» The singularities in the Borel plane have a clear physical origin —
they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

» Analogy with perturbative expansion in QFT and instanton effects

» Hydrodynamic expansion captures quantitatively fine details of these
leading nonhydrodynamic modes

» We do not find poles on the positive real axis suggesting the
existence of a Borel resummation

> It is fairly easy to numerically compute higher transport coefficients...
» Higher order hydrodynamics seems relevant for ‘small’ initial data...
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