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Introduction

What is hydrodynamics?

I Universal description of the long wavelength degrees of freedom
I Applies equally well at macroscopic and microscopic scales
I Current most relevant example: quark-gluon-plasma produced at

RHIC/LHC

Long wavelength description ≡ gradient expansion ≡ expansion in the
number of derivatives

Question: What is the nature of such an expansion?
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Introduction
Hydrodynamics:

1. Concentrates on the dynamics of the energy-momentum tensor Tµν
2. Amounts to the assumption that Tµν is wholly expressed through

the flow velocity uµ, energy density and pressure (E = 3p for
conformal fluids)

3. Arrange all possible terms by the number of derivatives of uµ

4. Coefficients of these terms ≡ transport coefficients characteristic of
the underlying microscopic theory

5. Generalized Navier-Stokes equation is just ∂µTµν = 0

N = 4 SYM hydrodynamics:

Tµνrescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸
perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν2a + 2Tµν2b + (2− log 2)
(

1
3
Tµν2c + Tµν2d + Tµν2e

))
︸ ︷︷ ︸

second order hydrodynamics

Bhattacharya, Hubeny, Minwalla, Rangamani
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Question 1

What is the nature of the gradient expansion?

I Suppose we include terms with more and more derivatives
(dissipation)

I Is the resulting series asymptotic (zero radius of convergence)?
I What physics is (quantitatively) responsible for the lack of

convergence?

Analogy: perturbative expansion and instanton effects...

Question 2

If the hydrodynamic series is only asymptotic, is it Borel
summable?

I What are the singularities on the Borel plane and what is their
physical interpretation?

These questions are very interesting but also quite theoretical...
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Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

6 / 18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

6 / 18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

6 / 18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

6 / 18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

6 / 18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

6 / 18



Question 3

Is there any practical motivation for looking at high order
hydrodynamics?

I Lublinsky, Shuryak proposed a resummation based on linearized
hydrodynamic modes from AdS/CFT with phenomenological
motivation

I In our previous work [Heller, RJ, Witaszczyk] we considered the
evolution of a spacetime dual to a plasma system evolving from some
nonequilibrium initial conditions and its transition to hydrodynamics

Large and intermediate
initial data

‘Small’ initial data

6 / 18



Final motivation:

N = 4 SYM provides for us (through the AdS/CFT
correspondence) the only physical system for which one can
systematically compute high orders of the gradient expansion and
examine the above questions
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Method: Fluid/gravity duality

I Approach pioneered by Bhattacharya, Hubeny, Minwalla, Rangamani
I One starts with a boosted planar black hole representing a plasma

system moving with uniform velocity uµ and with temperature T
I One promotes uµ and T to slowly varying functions – one has to

correct the metric iteratively in an expansion in gradients
I At each order one looks for a (regular) solution of

(Linear differential operator)[g (n)µν ] = RHS [{g (j)µν}0≤j≤n−1]

I Rather complicated to perform the expansion analytically:
• in general carried out to 2nd order (2nd order viscous
hydrodynamics)
• in boost-invariant case up to 3rd order
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Method: Fluid/gravity duality

I At each order we have a set of coupled linear ODE’s
I Very simple to solve numerically (with very high precision!)

Much simpler than normal numerical relativity which involves solving
nonlinear PDE’s!!

Simplicity/our practical motivation −→ consider the
boost-invariant setting
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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

I In a conformal theory, Tµµ = 0 and ∂µTµν = 0 determine, under the
above assumptions, the energy-momentum tensor completely in
terms of a single function ε(τ), the energy density at mid-rapidity.

I The assumptions of symmetry fix uniquely the flow velocity
I Gradient expansion coincides with an expansion in

1

τ
2
3

I A new combination of transport coefficients appears at each order in
the above expansion
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the above expansion

10 / 18



Large τ behaviour of ε(τ)

I Structure of the analytical result for large τ :

ε(τ) =
1

τ
4
3

− 2

2
1
2 3
3
4

1
τ 2

+
1 + 2 log 2

12
√

3

1

τ
8
3

+
−3 + 2π2 + 24 log 2− 24 log2 2

324 · 2 12 3 14
1

τ
10
3

+. . .

RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ, Heller; Heller

I Leading term — perfect fluid behaviour
second term — 1st order viscous hydrodynamics
third term — 2nd order viscous hydrodynamics
fourth term — 3rd order viscous hydrodynamics...

I In general:

ε(τ) =
∞∑

n=2

εn

τ
2n
3

I At each order new transport coefficients start to contribute to εn...
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Large τ behaviour of ε(τ)

I By iteratively solving numerically the linear ODE’s from fluid/gravity
duality, we obtained 240 coefficients in the gradient expansion

ε(τ) =
242∑
n=2

εn

τ
2n
3

• chief complication – generate the r.h.s. of the
equations
• to get to so high orders we need very high
precision computations
• first couple of orders – easy and fast

I Introduce u ≡ 1/τ 2/3

ε(u) =
242∑
n=2

εnun

Convergence

Zero radius of convergence
Asymptotic series...
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Borel transform

I Define the Borel transform

ε̃(u) =
242∑
n=2

εn

n!
un

I If there are no singularities on the real axis, a Borel resummation of
the asymptotic series can be obtained from the integral

εresum(u) =
∫ ∞
0
e−s ε̃(su) ds where u = τ−

2
3

I ε̃(u) has only a finite radius of convergence. In order to locate
singularities in the Borel plane, we perform a symmetric Pade
approximation...

I Look at poles ≡ zeroes of the denominator of the Pade
approximant...
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Singularities in the Borel plane

I The poles on the negative real
axis are spurious

I The zeroes of the
denominator of the Pade
approximant coincide with the
zeroes of the numerator up to
10−100 accuracy
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Singularities in the Borel plane

I Branch cuts on the Borel
plane

I Branch points set the radius
of convergence of the Borel
transform

I Apparently no poles on the
real axis!
Borel resummation should be
possible...

Question:

What is the physical interpretation of the branch cut
singularities?
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Singularities in the Borel plane

I Deform the contour of the
inverse Borel transform

εresum(τ) =

∫ ∞
0
e−ζ ε̃

(
ζ/τ

2
3

)
dζ

I The pole at the edge of the
cut (ζ0 = 4.12065+ 4.67895 i)
will contribute as

e−(4.12065+4.67895 i) τ
2
3

I This is exactly the first lowest non-hydrodynamic quasi-normal
mode!

I It is simply related to the scalar QNM of the planar black hole
through RJ, Peschanski

−i (3.1195− 2.7467 i)︸ ︷︷ ︸
planar BH QNM

∫
T (τ)︸ ︷︷ ︸
1/τ

1
3

dτ = −i 3
2
(3.1195− 2.7467 i)︸ ︷︷ ︸
−4.12005−4.67925 i

τ
2
3
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Singularities in the Borel plane
What is the interpretation of the whole branch cut?

I Deform the contour of the
inverse Borel transform to
encircle the cut and extract
the large τ behaviour

I We obtain a preexponential
power law factor

τ−1.5426+0.5192 i ·e−i 32 (3.1193−2.7471 i)τ
2
3

I The late time geometry is an evolving black hole deformed by
viscous corrections (first gradient terms in the fluid/gravity duality)

I This modification of the geometry generates a nontrivial power-law
modification of the quasi-normal mode which is

τ−1.5422+0.5199 i · e−i 32 (3.1195−2.7467 i)τ
2
3

I High order viscous hydrodynamic expansion encodes the fine details
of the first non-hydrodynamic degrees of freedom
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Conclusions

I We calculated the gradient expansion to very high orders
I The hydrodynamic expansion has zero radius of convergence
I The singularities in the Borel plane have a clear physical origin —

they correspond to the lowest non-hydrodynamic modes/degrees of
freedom

I Analogy with perturbative expansion in QFT and instanton effects
I Hydrodynamic expansion captures quantitatively fine details of these

leading nonhydrodynamic modes
I We do not find poles on the positive real axis suggesting the

existence of a Borel resummation
I It is fairly easy to numerically compute higher transport coefficients...
I Higher order hydrodynamics seems relevant for ‘small’ initial data...
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