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Results from those early days
● primary operators + descendants [Mack, Salam 1969]

● unitarity bounds [Ferrara, Gatto, Grillo 1974, Mack 1977]

● conformally invariant OPE
● constraints on the correlation functions of primaries
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Results from those early days
● primary operators + descendants [Mack, Salam 1969]

● unitarity bounds [Ferrara, Gatto, Grillo 1974, Mack 1977]

● conformally invariant OPE
● constraints on the correlation functions of primaries

1)  Any CFT is characterized by 

conformal data = {primary operator dimensions Δi, OPE coefficients cijk}

2) OPE associativity: 

should fix the data ⇒ conformal bootstrap

They realized that:

Enter QCD...



/17

   

4

Conformal blocks
D>2 discl...

conf. blocks
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...and coordinates for them

● ● 

● 

cut
z-coord:

used to express conf. blocks in [Dolan, Osborn 2000,2003,2011]
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...and coordinates for them

● ● 

● 

cut
z-coord:

used to express conf. blocks in [Dolan, Osborn 2000,2003,2011]

ρ-coord:
[Pappadopulo, S.R., Espin, Rattazzi 2012,

Hogervorst, S.R. 2013]
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...and coordinates for them

● ● 

● 

cut
z-coord:

used to express conf. blocks in [Dolan, Osborn 2000,2003,2011]

known coeffs.
D=2, Al.Zamolodchikov,fractional...

ρ-coord:
[Pappadopulo, S.R., Espin, Rattazzi 2012,

Hogervorst, S.R. 2013]
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Convergence of conf. block decomposition
[Pappadopulo, S.R., Espin, Rattazzi 2012]

● ●● ●
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Convergence of conf. block decomposition
[Pappadopulo, S.R., Espin, Rattazzi 2012]

● ●● ●

⇒  convergence for all r<1
+ polynomial bound on “weighted spectral density”
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Convergence of conf. block decomposition
[Pappadopulo, S.R., Espin, Rattazzi 2012]

● ●● ●

Cf.

⇒  convergence for all r<1
+ polynomial bound on “weighted spectral density”
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Simplest bootstrap equation

crossing:

Mathematically well-def ’d, S-matrix...
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Simplest bootstrap equation

crossing:

● ●

●

Mathematically well-def ’d, S-matrix...
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Simplest bootstrap equation

crossing:

● ●

●

convergence cuts

Mathematically well-def ’d, S-matrix...
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Numerical exploration

1) Identifying “swampland” in the space of CFT data

2) Study of theories at the “swampland boundary”



/17

   

9

I. Charting out CFT “swampland”

Keyword: linear programming (way to enforce                              )                                   

Rule out large chunks of CFT data space 
which do not correspond to any CFT, 

because bootstrap equations do not allow a solution

[Rattazzi, S.R, Tonni, Vichi, 2008] + many subsequent works
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I. Charting out CFT “swampland”

Keyword: linear programming (way to enforce                              )                                   

Rule out large chunks of CFT data space 
which do not correspond to any CFT, 

because bootstrap equations do not allow a solution

Roads to swampland:

increase gaps in the spectrum

pump up OPE coefficients

CFT

[Rattazzi, S.R, Tonni, Vichi, 2008] + many subsequent works
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Example of a gap study
Take any CFT with G ⊃ SO(N)  global symmetry

fund. of SO(N) lowest dimension singlet and    
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Example of a gap study
Take any CFT with G ⊃ SO(N)  global symmetry

fund. of SO(N) lowest dimension singlet and    
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Figure 6: An upper bound on the lowest dimension symmetric tensor scalar appearing in φ × φ,
where φ transforms in the fundamental of SO(4). Here we show k = 2, . . . , 11.

the k = 11 curve in figure 8 is given by

∆0 ≤ 2(1 + ε) + 2.683 ε2 + . . . (ε # 1), (3.10)

where d = 1+ ε. Note that known superconformal theories populate the entire factorization
line,10 so it is impossible to have a bound stronger than ∆0 ≤ 2d. Our bound on dim(Φ†Φ) is
one of the few examples computed to date that approaches the provably best possible bound
for some nontrivial range of d’s.

Eq. (3.10) can be directly tested in theories that admit a perturbative Banks-Zaks limit
and contain a chiral operator with dimension near 1. As far as we are aware, there are
no known examples of perturbative theories living above the factorization line. Here we
have shown numerically that this can be understood purely from the constraints of crossing
symmetry and unitarity. It would be very interesting to understand this fact analytically.

It is amusing to speculate on the form of the bound as k → ∞. A simple and intriguing
possibility is that the small-d behavior might extend to all d, so that the best possible bound
∆0 ≤ 2d is realized. In other words, it might be the case that the anomalous dimension

10Namely supersymmetric mean field theories, which satisfy the necessary requirements of unitarity and
crossing symmetry, and exist for each d ≥ 1. They occur in the infinite-N limit of supersymmetric gauge
theories.

26

technicolor models, as we will discuss in detail in the following section. Notice again that
the curves start to converge at large k. An approximate fit to the strongest (k = 11) bound
is given by

dim(|φ|2) ≤ 2 + 3.119ε+ 0.398(1− e−12ε), (3.3)

where d = 1 + ε, with ε between 0 and 1. This bound crosses ∆0 = 4 around d ≈ 1.52.

d

∆0

Upper bound on dim(|φ|2) for SO(4) or SU(2)
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Figure 3: An upper bound on the dimension of φ†φ, the lowest dimension singlet scalar appearing
in φ† × φ, where φ transforms in the fundamental representation of an SO(4) or an SU(2) global
symmetry. Curves are shown for k = 2, . . . , 11. The bounds for SO(4) and SU(2) are identical in
each case. The strongest bound crosses ∆0 = 4 around d = 1.52.

Figure 4 shows dimension bounds for SO(N) with N = 2, . . . , 14 and SU(N) with N =
2, . . . , 7. The strongest bound corresponds to the global symmetry group SO(2) ∼= U(1),
and the bounds weaken as N increases. One might näıvely expect a larger symmetry group
to produce a stronger bound. For instance, a theory with an SO(N) symmetry certainly
also has an SO(N − 1) symmetry, so why shouldn’t all bounds from the former apply to the
latter? However, as discussed in section 2.7, the problem we are solving actually changes
with N , and this turns out to be a more important effect than the enhanced symmetry. Note
that the lowest dimension singlet under an SO(N−1) subgroup of SO(N) is not necessarily a
singlet at all under the full SO(N). Thus, SO(N) bounds for larger N apply to the operator

is straightforward to verify that including the fourth sum rule of Eq. (2.18) leads to a redundant set of
constraints, and is therefore unnecessary.

21

[Vichi 2011, Poland, Simmons-Duffin, Vichi, 2011]
Analytic bounds from “toy bootstrap”: [Hogervorst, S.R. 2013]

D=4, G=SO(4)

Any CFT is forced to live below these lines
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A central charge lower bound
Suppose know Δσ, 

can we say something about                             ?                            
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A central charge lower bound
Suppose know Δσ, 

can we say something about                             ?                            

Hint:
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d
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min CT

CT�4�3
N�16

N�12

Figure 5: The lower bound on the central charge CT in terms of the dimension d of the lowest-

dimension scalar primary. The stronger bound (upper blue curve) is obtained with N = 16. For

comparison we give a weaker bound obtained with N = 12 (lower red curve), which corresponds

to the horizontal axis ∆∗ = d in the following Fig. 6. The horizontal dashed line CT = 4/3 shows

where our bound stays above the free scalar central charge.

of φ in the range 1 ≤ d ≤ 2. We plot our best bound for N = 16 and, for comparison, a weaker

bound obtained with a smaller value N = 12.

Postponing the discussion to the next Section, let us now consider what happens with the

bound in presence of a gap in the scalar spectrum. In other words, we now assume that the

first scalar operator in the φ× φ OPE has dimension ∆∗ strictly bigger than d. Technically, this

problem is analyzed exactly as the previous one, except that the first set of constraints (27) is

replaced by a shorter list:

Λ[Fd,∆,0] ≥ 0 for all ∆ ≥ ∆∗ . (28)

Because of considerable computer time involved, we solved this problem by using linear functionals

with N = 12 only. The bound is given in Fig. 6 as a contour plot in the d,∆∗ − d plane. On the

horizontal axis ∆∗ = d the bound reduces to the N = 12 bound from Fig. 5. Naturally, when ∆∗

increases, the bound on CT gets stronger. The white region in upper left corresponds to

∆∗ > 2 + 0.7(d− 1)
1/2

+ 2.1(d− 1) + 0.43(d− 1)
3/2

(29)

and is excluded, since such a large gap cannot be realized in any CFT according to the results of

[2].

11

(free scalar)

Any CFT4 must live above the curve

[Poland, Simmons-Duffin 2011,
Rattazzi, S.R.,Vichi 2011]
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II. Studying “swampland boundary”
Example:
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II. Studying “swampland boundary”
Example:

No sols to crossing

∆min > ∆c

sum rule violated
∆min = ∆c

critical case
∆min < ∆c

sum rule satisfied

Figure 6: The three geometric situations described in the text. The thick black line
denotes the vector corresponding to the function F ≡ 1.

combinations in the RHS of (4.5) form, in the language of functional analysis, a convex cone C in
the function space {F (a, b)}. For a fixed spectrum, the sum rule can be satisfied for some choice
of the coefficients if and only if the unit function F (a, b) ≡ 1 belongs to this cone.

Obviously, when we expand the spectrum by allowing more operators to appear in the OPE,
the cone gets wider. Let us consider a one-parameter family of spectra:

Σ(∆min) = {∆, l | ∆ ≥ ∆min (l = 0), ∆ ≥ l + 2 (l = 2, 4, 6 . . .)} . (5.2)

Thus we include all scalars of dimension ∆ ≥ ∆min, and all higher even spin primaries allowed by
the unitarity bounds.

The crucial fact which makes the bound (1.4) possible is that in the limit ∆min → ∞ the
convex cone generated by the above spectrum does not contain the function F ≡ 1! In other
words, CFTs without any scalars in the OPE φ× φ cannot exist, as we already demonstrated in
Section 5.1 for d sufficiently close to 1.

As we lower ∆min, the spectrum expands, and the cone gets wider. There exists a critical
value ∆c such that for ∆min > ∆c the cone is not yet wide enough and the function F ≡ 1 is still
outside, while for ∆min < ∆c the F ≡ 1 function is inside the cone. For ∆min = ∆c the function
belongs to the cone boundary. This geometric picture is illustrated in Fig. 6.

For ∆min > ∆c, the sum rule cannot be satisfied, and a CFT corresponding to the spectrum
Σ(∆min) (or any smaller spectrum) cannot exist. By contradiction, the bound (1.4) with f(d) =
∆c must be true in any CFT. The problem thus reduces to determining ∆c.

Any concrete calculation must introduce a coordinate parametrization of the above function
space. We will parametrize the functions by an infinite vector

�
F (2m,2n)

�
of even-order mixed

derivatives at a = b = 0:
F (2m,2n) ≡ ∂2m

a ∂2n
b F (a, b)

���
a=b=0

. (5.3)

Notice that all the odd-order derivatives of the functions entering the sum rule vanish at this point
due to the symmetry expressed by Eq. (4.6):

F (2m+1,2n) = F (2m,2n+1) = F (2m+1,2n+1) = 0 .

The choice of the a = b = 0 point is suggested by this symmetry, and by the fact that it is near
this point that the sum rule seems to converge the fastest, at least in the free scalar case, see
Fig. 3.

21
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this point that the sum rule seems to converge the fastest, at least in the free scalar case, see
Fig. 3.

21



/17

   

13

2D and 3D gap study

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80 �Σ1.0

1.2

1.4

1.6

1.8

�Ε

Figure 3: Shaded: the part of the (∆σ,∆ε) plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each ∆σ in this range, we ask: What is the maximal ∆ε allowed by (5.3)?

The result is plotted in Fig. 3: only the points (∆σ,∆ε) in the shaded region are allowed.4
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Other kinks

● same kink happens for any 2≤ D<4;
its position agrees with ε-expansion for D→ 4

[El-Showk, S.R, Vichi, work in progress]

● same kink happens for O(N) model in D=3;
its position agrees with 1/N expansion for N→ ∞

[Poland, Simmons-Duffin, work in progress]

Kinks have something to do with operator decoupling...
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Spectrum of σ x σ OPE in 3D Ising model
Current knowledge
(from RG methods):

Operator Spin l ∆

ε 0 1.413(1)
ε� 0 3.84(4)
ε�� 0 4.67(11)
Tµν 2 3
Cµνκλ 4 5.0208(12)

Table 2: Notable low-lying operators of the 3D Ising model at criticality.

The approximate values of operator dimensions given in the table have been determined
from a variety of theoretical techniques, most notably the �-expansion, high temperature
expansion, and Monte-Carlo simulations; see p. 47 of Ref. [1] for a summary. The achieved
precision is rather impressive for the lowest operator in each class, but quickly gets worse
for the higher fields. While ultimately we would like to beat the old methods, it would be
unwise to completely dismiss this known information and restart from scratch. Rather, we
will be using it for guidance while sharpening our own methods.

Among the old techniques, the �-expansion of Wilson and Fisher [2] deserves a separate
comment. The well-known idea of this approach is that the 3D Ising critical point and the
4D free scalar theory can be connected by a line of fixed points by allowing the dimension
of space to vary continuously between 3 and 4. For D = 4− �, the Wilson-Fisher fixed point
is weakly coupled and the dimensions of local operators can be expanded order-by-order in
�. For the most important operators, like σ and ε, these expansions have been extended to
terms of order as high as �5 [26], requiring a five-loop perturbative field theory computation.
However, as often happens in perturbation theory, the resulting series are only asymptotic.
For the physically interesting case � = 1, their divergent nature already starts to show
after the first couple of terms. Nevertheless, after appropriate resummation the �-expansion
produces results in agreement with the other methods. So its basic hypothesis must be
right, and can give useful qualitative information about the 3D Ising operator spectrum,
even where accurate quantitative computations are missing.

It is now time to bring up the conformal invariance of the critical point, conjectured
by Polyakov [3]. This symmetry is left unused in the RG calculations leading to the �-
expansion, and in most other existing techniques.1 This is because it only emerges at the
critical point; it’s not present along the flow. Conformal invariance seems to be a generic
feature of criticality, but why exactly is not fully understood [30]. Recently there has been
a renewed interest in the question of whether there exist interesting scale invariant but not
conformal systems [31–36]. We will simply assume as a working hypothesis that the 3D
Ising critical point is conformal.

A nice experimental test of conformal invariance would be to measure the three-point
function �σ(x)σ(y)ε(z)� on the lattice, to see if its functional form agrees with the one fixed
by conformal symmetry [3]. We do not know if this has been done.

1Conformal invariance has been used in studies of critical O(N) models in the large N limit [28, 29].
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Assuming 3D Ising lives at the kink
⇒ can determine all*) operators in σ x σ OPE + their OPE coeffs 

*) numerical work.  In practice: all ≈ 20-30

[work in progress]
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Warmup study for 2D Ising

Δ 

El-Showk, Paulos 2012

Blue=exact
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Other interesting developments

● Analytic results about l>>1spectrum from bootstrap near light cone 
Fitzpatrick,Kaplan,Poland,Simmons-Duffin 2012, 

Komargodski, Zhiboedov 2012

[Liendo, Rastelli, van Rees 2012
Gaiotto, Paulos, work in progress]

● Bootstrap for conformal boundary conditions and defects

● Bootstrap for <JJJJ> and <TTTT> [work in progress by Dymarsky]

Beem, Rastelli, van Rees 2013 + work in progress

● Bootstrap for SUSY theories

-N=1
-N=4, N=2 

Poland,Simmons-Duffin 2010 + subsequent work


