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Null Polygonal Wilson Loops In
Conformal Gauge Theories

* Wilson Loops are important observables in Gauge theories

(btw, smooth curves can be approximated by null polygons with many edges)

[Alday, Gaiotto, Maldacena Sever,PV]

% |n the Ising model of QFTs,
planar N=4 SYM,
WL = Scattering Amplitudes b >

[Alday, Maldacena; Drummond, Korchemsky, Sokatchev;
Brandhuber, Heslop, Travaglini; Drummond, Henn, Korchemsky,
Sokatcheyv; Berkovits, Maldacena]
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% Solving Scattering Amplitudes in planar N=4 SYM is
tantamount to summing over all flux tube excitations at any
finite ‘t Hooft coupling.

OPE for Correlation Functions OPE for Wilson Loops

Perturbation theory and the OPE expansion are different.
Each expansion provides invaluable data for the other.
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A given tesselation will naturally come with a radius of
convergence. Same as for the OPE of local operators.
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Propagation in the A pentagon transition P between
n-5 middle squares each pair of consecutive squares

% To get Scattering Amplitudes in planar N=4 SYM
non-perturbatively we need:

* The exact spectrum of the flux tube excitations.
[Basso 2010]

* All pentagon transitions between any two flux

tube eigenstates at any coupling.
[Basso,Sever,PV 2013] + [Basso,Sever,PV unpublished/work in progress]

The spectrum and the pentagon transitions are
dynamical observables of the color flux tube.

They are not geometrical. The geometry enters in a
trivial fashion in the first square bracket.




Questions for the rest of the talk

What is a nice coordinatization of null polygons from the OPE
point of view? |.e, what exactly is 75, 0;, @;?

The null polygonal WL is UV divergent because of the cusps.
What exactly are we computing?

What are the flux tube eigenstates 1;? How to sum over them?
How to compute the pentagon transitions at finite coupling?
* What happens at weak coupling?

* What happens at strong coupling?




* For a given tessellation in terms of null squares we define the following finite
conformal invariant ratio:

All cusp divergences drop out of this object. The conformal anomaly of [Drummond,
Henn, Korchemsky, Sokatchev] cancels out as well. This is a finite conformal invariant object.

Hence it can only depend on the cross ratios made out of the positions of the cusps

of the original polygon. For a null polygon with n edges there are 3n-15 such cross-
ratios. (for the heptagon in the figure there are 6 cross-ratios.)

Squares and pentagons have no cross-ratios hence they are fixed by conformal

symmetry and are given by the BDS ansatz. (This is the analogue of the statement that 2 and 3
point functions are fixed by conformal symmetry in a CFT.)

Hence we loose no information in considering this finite ratio.




* To measure some charge of the states flowing from A to B we act with the symmetry
generators (corresponding to that charge) on A (or on B). See e.g. the usual OPE for 4pt
correlation functions where we act with dilatations on two points to measure what flows from
two operators to the other two. (Of course acting on both A and B means doing nothing by definition.)

* Similarly, each middle square in our tessellation has 3 symmetries
corresponding to a time translation, a space translation and a rotation

of the orthogonal directions. We act with those symmetries on the
cusps below each that square. In this way we measure the energy,
momentum and angular momentum flowing in each middle square.

Equivalently:
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There are n-5 middle squares so the 3n-15 parameters 7;, 05, qbz
coordinatize all conformally inequivalent polygons.




% |n other words...




% So far we considered mostly kinematics and thus very general (it
applies to any 4D conformal theory). We found that

2
55 E |:H6Ei7'i+ipi0'i+imi¢i
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recall that P does not depend on
geometry since all pentagons are

P(0[tp1)P(th1|3p2) P(h2]0) conformal equivalent. P is a flux

tube observable.

* Now we move to the most interesting part, the dynamics.
What are the flux tube eigenstates , ? How to sum over them? How

to compute the pentagon transitionzgiat finite coupling?

We will now specialize to planar N=4 SYM.




* There are several equivalent descriptions of the excited flux tube:
*  As null Wilson lines with insertions

‘ 5
e )

* As large spin operators

— —
O=tr (ZDDDD ... DDDD FDDDD ... DDDD FDDDD ... DDDD 7)

* As an excited GKP [Gubser,Klebanov,Polyakov] folded string.

— —

e

< —

* These states have a fixed number of excitations with given momenta and we know
their spectrum exactly from Integ rability [Basso 2010] (we also know how these excitations scatter
amongst themselves [Basso,Rej;Fioravanti,Piscaglia,Rossi;Basso,Sever,PV]). Hence

Z:Z/dul...duN,u(ul)...,u(uN)
170 a

T E (U e el p=p(ur) +- -+ plun)

The vector a indicates which kind of excitations we are considering. For example,
the state above has two gluonic excitations so that a={FF}.




* Hence we have (boldface indicate vectors)

: &

o Z /du dv Pa(0|u) e—E(u)n-l—ip(u)al—l—imlqbl Pab(l_l|V) e—E(V)Tg-l—’ip(V)O‘z-l—i’fng(bgPb(\—/_|0)
a,b

* The challenge is now to compute the pentagon transitions between a state with N
particles and another state with M excitations.

* The simplest transitions where a single excitation propagates from one square to
the next. Multi-particles can be more or less built out of those, see below. This is
a manifestation of Integrability for the pentagon transitions.

% Single particle transitions are associated to the lightest states so they are also the

most important ones. E.g., they determine the dominant behavior of the WL in the
near collinear limit of large tau’s.




* \We consider for illustration the case where the bottom and the top
excitations are gluons. We want to compute the single particle pentagon
transition at any coupling
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P(ul|v)

* \We postulate three Bootstrap like axioms that this object should satisfy.
They take the form of functional equations. We found one solution to
these equations which, we conjecture, gives the pentagon transition at
any finite coupling.

/I. P(ulv) = P(—v| — u)

I. P(ulv) = S(u,v)P(v|u)

. P(u™7v) = P(v|u)




* Axiom 1, P(—u| —v) = P(v|u), is the obvious reflection symmetry of the pentagon.
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* Axiom 3 comes from the mirror symmetry of the flux tube. There exists a non-
perturbative path in the rapidity u which implements the Wick rotation:
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Hence we expect QIS e == SR G o)




* Axiom 1, P(—u| —v) = P(v|u), is the obvious reflection symmetry of the pentagon.

* Axiom 3 comes from the mirror symmetry of the flux tube. There exists a non-
perturbative path in the rapidity u which implements the Wick rotation:

p(u") = iB(u) %

Hence we expect

QIS e == SR G o)

% Axiom 2, P(u|v) = S(u,v)P(v|u), together with the other two, implies Watson’s
equation P(0|u,v) = S(v, u)P(0|v,u) where P(0|u,v) is given by

o— n
u v )

This is a nice self-consistency check and is the main motivation for axiom 2.



* We can solve the bootstrap equations. For example, a solution for the scalar
excitations is

5(u,v)
9*(u —v)(u —v +8)S(u, v)
It provides a precise connection between the space-time and the flux tube S-
matrices. They hold at any coupling.

P(ulv)? =

The flux tube S-matrices can be computed at any coupling using Integrability
[Basso,Rej;Fioravanti,Piscaglia,Rossi;Basso,Sever,PV] The main ingredients are solutions to linear integral equations akin

to the so-called BES equation for the flux-tube vacuum.

* Multi-particles are built in terms of the single particle transitions:

[[P(uilvy)
2, :
B — ! x (Group theory matrix part)
[ Plus|ug) 1] Plvifvy)
P> 1<J
We have an algorithm for getting the SU(4) matrix part but so far we only checked it up to a small
number of particles (at most eight). For example, for two scalars

P(u\v)zll;f = Pyyn(ulv) [Wl(ulv)égll(ﬁj + ﬂg(ulv)égf(Sg; -+ 7T3(u\v)57;17;25~71j2]

where the matrix functions 77 ; are simple, rational functions of the rapidities, independent of the coupling.




* We can now compare our representation

: S

o Z /du dv Pa(0|u) e—E(u)Tl-l—ip(u)al-l—imlqbl Pab(l_l|V) e—E(V)T2+ip(V)02+im2gb2Pb(\—/_|0)

with weak and strong coupling results.

* At strong coupling we can derive the Y-system in [Alday,Gaiotto,Maldacena; Alday Maldacena,Sever, Vieira]
This involves re-summing infinitely many
multi-particles and boundstates.

This is quite exciting since the strong coupling
result was begging for such an interpretation.




* At weak coupling we checked the single particle transitions against all available data in
the literature for Wilson loops up to 3 loops.

*

MHV Hexagon at 1 Loop [Bern,Dixon,Smirnov], 2 LOOPS [Del Duca,Duhr,Smirnov;

Goncharov,Spradlin,Vergu,Volovich], 3 LOOpS [Dixon,Drummond,Henn], 4 LOOpS
[Dixon,Duhr,Pennington, to appear]

MHYV Heptagon at 1 Loop [Bern,Dixon,Smirnov], 2 LOOPS [Caron-Huot]

NMHV Hexagon at 1 Loop [Bern,Dixon,Dunbar,Kosower;
Drummond,Henn,Korchemsky,Sokatchev], 2 LOOPS [Dixon,Drummond,Henn]

NMHV Heptagon at 1 Loop [Bourjaily,Caron-Huot,Trnka], 2 LOOPS [Caron-Huot,He]

(MHV amplitudes = Bosonic WL, non-MHV amplitudes = Superloop [Skinner,Mason;Caron-Huot];
OPE still applies [Sever, PV,Wang])

* We also generated infinitely many higher loop predictions

* Not everything is done:

*

We have conjectures for transitions

with fermions. But they are not as well E(u”) = ip(u)
motivated since mirror .(and F:rossmg) p(u?) = iE(w)
transformation for fermions is not well
understood/does not seem to exist.

0\1,§>
iy

We seem to be able to compute matrix part case by case but a general expression
(which would render the re-summation easy) is still lacking.

Once we have all the transitions, or at least many transitions, would be nice to think
what is the best way to plot the amplitude.




* Does our partition function

Wiheh?— >

2= Z/du v Pa(O’LI) e—E(u)7'1+ip(u)01—|—im1cb1Pab(ﬁ|v) e_E(V)T2+ip(V)U2+im2¢2Pb(\7‘0)
a,b

re-sum into some beautiful object from the Integrability point of view?

At strong coupling it does!: The Yang-Yang functional and its associated
TBA equations.” What about finite coupling? We don’t know yet but in any
case, we should be able to plot the finite coupling amplitude nevertheless.

* Could be interesting to see how WL data from other conformal gauge
theories looks like when OPE decomposed.

* for the experts: the strong coupling result for the Wilson loop contains several contributions but
once we compute the finite ratio W everything cancels out except for the nicest of all (from the
Integrability point of view) which is the Yang-Yang functional!
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Thank you




* Multi-particles

11 P(us|vj)

i 2 |
R R = I Pluilu;) T Ploilo) x (Group theory matrix part)

P> =<7

* The matrix part encodes the SU(4) symmetry of the excitations. For gluons
the matrix part is 1. For scalars and fermions it is non-trivial. For example,
for two scalars we have

P(ulv) = Payu(ulv) [ (V)62 62 + mo(ulv)62 65 + m(ulv)si,s, 7]

1112 D as. LD 196 =10
where

(w1 — v1)(ug — vo + 1)
(Ul iy & 7:)(’01 U5t Z)

m(ulv) +m(ulv) = 1, mo(ulv) =

(w1 —v1)(ug — vo + ) (ug — v1 — 2)(ug — vo + 21)
(w1 — uo — 1) (uy — ug — 2¢)(v1 — Vo + 4) (v, — v + 2¢)

mo(ulv) + m3(ulv) =

(We believe we have an algorithm for getting the matrix part but so far we only checked it
up to a small number of particles, at most 8)



* For the experts, in terms of the momentum twistors appearing in the previous talks
we have

60-2j+7-2j_i¢2j 8 <_j o ]‘7 _]7] _|_ ]‘7] —l_ 2><]7] —I_ ]‘7] —I_ 27] +3>
(
(
(

627’2j =
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602j—|-7'2j—|-i</52j —

62’7’2j+1 pinde

602j+1+7'2j+1—?3(/52j+1 it

(
(
602j+1+7'2j+1+73¢2j+1 s <
(
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* We have a matrix: Kij — 2 ' J(z+1) / t‘]’t 2975 (th)

— .
0

[ dt J;(2gt)(Jo(2gt) — cos(ut) [e"/?] (_1)nxj)

* And 2 vectors similar to each other. One of them is #;(u) = — / = S
0

* Finally we have a matrix of integers Qi; = d;(—1)*"% and M=(1+K)!'=1-K+K*—-K3+...

% Then we construct four similar functions f1234. For example fi(u,v) =2x(v) - Q- M - k(v)

% The gluon S-matrix which is the non-trivial ingredient in the pentagon transitions, reads

- TE - )3 + i) (iu — i)
S(u,v) = L2+ iw)l(2 — ) (v — i)

F(u,v)
where

~Y/2(sin (ut) — sin (vt))
et —1

log F' = 22/ dt(Jo(th) — 1)6 — 2uf1 + 2t f>

0
% The mirror S-matrix uses the other two functions fi234

* The famous cusp anomalous dimension is nothing but (4g2times) [Q - M|, 4
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* We can solve the bootstrap equations. A solution for the scalar excitations is

S(u,v)

Pl = = o= v+ 5@, v)

while for gluonic excitations we have (f is a simple function of the so called Zhukowsky variables)

I S (u, v) A0
2 e = g2(u—v)(u—v—1i) S(ur,v)

These formulae establish a precise connection between the space-time and the flux
tube S-matrices. They hold at any coupling.

The flux tube S-matrices can be computed at any coupling using Integrability

[Basso,Rej;Fioravanti,Piscaglia,Rossi;Basso,Sever,PV] The main ingredients are the solutions to the so called BES
[Beisert,Eden,Staudacher] equation describing the flux tube vacuum.

* Multi-particles are built in terms of the single particle transitions:
[ Pus|vy)
P(uis|1v;r) = — Group th trix part
({ Z}’{ ]}) H P(UZ'UJ) H P(’UZ‘UJ) X( roup theory matrix par)

1>7 1<
(We believe we have an algorithm for getting the matrix part but so far we only checked it
up to a small number of particles, at most 8)




