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I view the foundation of string theory as a sort of tripod, with the
three supporting legs being perturbative string theory, by which the
subject was discovered; the web of nonperturbative dualities,
whose consistency gives powerful evidence that the theory exists
beyond perturbation theory; and gauge/gravity duality, which gives
a nonperturbative definition under certain circumstances.



There is a certain sense in which perturbative string theory is first
among equals: if one looks closely, most of what we know about
the other two legs of the tripod ultimately requires making contact
with something we know from perturbative string theory.



25 years ago, it seemed (to me) that perturbative string theory was
sufficiently well understood, but in the meantime so much progress
was made in the other two areas that (to me again) the foundation
in perturbative stringy theory came to look a little shaky by
comparison.



Today I will concentrate on explaining some basic facts about
space-time supersymmetry in superstring theory (in the RNS
formulation).

The points are elementary but if one suppresses
them, one runs into the complications that were in fact
encountered in the 1980’s.
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Let us orient ourselves by starting with bosonic closed strings. Let
V be a (1,1) primary state (constructed from matter fields only)
that represents a massless graviton (or B-field) mode. V is pure
gauge – it is a null state in the language of conformal field theory
– if V = L−1W ( or L̃−1W ) for some W . (W is a primary of
appropriate dimension.)



Using the operator-state correspondence of conformal field theory,
V corresponds to a (1,1) primary field (or vertex operator) which I
will also call V that can be integrated over the string worldsheet Σ
to describe the coupling of the state in question.

Now what if V is
pure gauge? In terms of the vertex operator, the equation
V = L−1W becomes V = ∂W , in other words V is a total
derivative. Hence ∫

Σ
V =

∫
Σ
∂W = 0.

This is the most elementary explanation of gauge-invariance for
massless states of the bosonic string.
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What about massive states of the bosonic string?

We still need
gauge-invariance, to decouple longitudinal modes, but the
explanation that I have just given does not work. A massive null
vector might be V = L−1W , but it might also be
V = (L−2 + 3

2L
2
−1)W , where again W is a primary of appropriate

dimension. In this case, it is not true that V is a total derivative
on the worldsheet, and there is no reason for

∫
Σ V to vanish.
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So why do massive null states decouple?

For this, we really should
use the BRST formalism. We replace the (1,1) primary V by the
BRST-invariant vertex operator V = c̃cV , V is sometimes called
the unintegrated form of the vertex operator. It has ghost number
(1, 1) and dimension (0,0). The condition that V is a null vector
becomes the statement that V is BRST-trivial, V = {Q,W} for
some W.
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In the BRST approach, to compute an S-matrix element, one
considers the worldsheet path integral

〈V1 . . .Vn〉worldsheet

with an insertion of a product of BRST-invariant vertex operators
V1, . . . ,Vn. To make this path integral nonzero, we need a lot of
antighost insertions (6g − 6 + 2n of them) and the dependence of
the worldsheet path integral on the antighost insertions gives a
differential form FV1,...,Vn of top degree on Mg ,n, the moduli space
of Riemann surfaces of genus g with n marked points. The genus
g contribution to the scattering amplitude is then

〈V1V2 . . .Vn〉g =

∫
Mg,n

FV1,...,Vn .



Suppose now that one of the vertex operators is pure gauge, say
V1 = {Q,W}, where the ghost number of W is 1 less than that of
V1 (and so 1 instead of 2). We consider a worldsheet path integral

〈WV2 . . .Vn〉worldsheet

and as the ghost number is 1 less than before, it takes 1 less
antighost insertion than before to make this path integral nonzero.
Hence it defines a differential form FWV2...Vn whose degree is 1 less
than that of the form FV1V2...Vn that has to be integrated to
compute the genus g contribution to the S-matrix element.

The
essential fact in the proof of gauge invariance is that Q maps to
the exterior derivative d in the sense that (L. Alvarez-Gaumé, C.
Gomez, G. W. Moore, and C. Vafa, 1988)

FV1V2...Vn = dFWV2...Vn .
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The proof of gauge-invariance of the genus g contribution to a
scattering amplitude (for any g) is almost immediate:
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∫
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=

∫
∂Mg,n

FW,V2,...,Vn , (1)

where ∂Mg ,n is the “boundary” of moduli space.

In the last step,
we integrated by parts and used Stokes’s theorem. To complete
the proof, we just have to show that the boundary contributions
vanish. For the problem we are considering at the moment
(decoupling of pure gauge modes in the S-matrix) this poses no
great difficulty.
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The moral of the story is that decoupling of longitudinal modes is
always proved by integration by parts, but in general the
integration by parts has to be made on the full moduli space, not
just on the worldsheet Σ.

The link between the two types of
integration by parts comes from the existence of a “forgetful”
fibration from Mg ,n to Mg ,n−1:

Σ → Mg ,n

↓
Mg ,n−1

We can integrate over Mg ,n by first integrating over the fiber (i.e.
over the position of one given vertex opertar V1 in a fixed Riemann
surface Σ) and then over the base (the remaining moduli of Σ,
including positions of other vertex operators). For massless null
states, one gets a total derivative already in the first step, but for
massive null vectors, only the overall (or final) integral is a total
derivative.
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Just as in field theory, there is another very important difference
between gauge invariances of massive particles and gauge
invariances of massless ones.

Gauge invariances of massive
particles are spontaneously broken. They do not lead to
conservation laws. But gauge invariances of massless particles are
unbroken and generally do lead to conservation laws.
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To explain how this happens, let us consider in bosonic closed
string theory the gauge parameter W = c̃ε · ∂̃Xe ik·X . For k
non-zero, V1 = {Q,W} is a massless null vector, but if we set
k = 0, W becomes antiholomorphic and V1 = {Q,W} = 0.



We can run the same argument as before for decoupling of null
vectors, but now, since V1 = 0, the left hand side is zero for a
more trivial reason:

0 =

∫
Mg,n

FV1...Vn =

∫
Mg,n

dFWV2...Vn =

∫
∂Mg,n

FWV2...Vn .

Although the left hand side is trivially zero, once we set k = 0, the
right hand side is not trivially zero. On the contrary, we get
nonzero contributions from the integrals over the different
components of ∂Mg ,n. The fact that these contributions add to
zero is a conservation law (conservation of momentum or
momentum plus winding, in this case).
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We will return to this way of looking at the conservation law when
we discuss spacetime supersymmetry.

However, for bosonic strings,
we do not really need such an abstract approach. The conservation
law only comes from massless null vectors (since gauge symmetries
of massive states are spontaneously broken), and as we discussed
at the beginning, decoupling of massless null vectors can be seen
just by integrating by parts on Σ, not on the full moduli space. So
let us discuss the conservation law in that language.
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For this, instead of saying that at zero momentum 0 = {Q,W},
we remove the ghosts and then the usual relation V = ∂W
becomes (since V = 0 at zero momentum) 0 = ∂W , in other
words W is an (antiholomorphic) conserved current. We do not
need fancy arguments on moduli space to get a conservation law
because we simply have a conserved current on the worldsheet.



As usual a conserved current leads to a conservation law:

0 =

∫
Σ
d2z〈∂W (z̄ , z) · V2 . . .Vn〉Σ =

n∑
j=2

〈V2 . . .

∮
γi

W · Vi . . .Vn〉Σ,

where γi is a small loop around Vi :

So if Vi has “charge” qi , in the sense that
∮
γi
W · Vi = 2πiqiVi ,

then 0 =
∑

i qi · 〈V2 . . .Vn〉 and for the correlation function to be
nonzero requires a conservation law∑

i

qi = 0
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One notable thing about this is that it always works. If the
conformal field theory that we start with at string tree level has a
conserved current W , then there is definitely a global symmetry to
all orders of perturbation theory.

There is no way that a Goldstone
boson can come in and spoil the Ward identity.
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Now we go to superstring theory.

For gauge invariances of
massless states coming from the Neveu-Schwarz sector, there is no
essential difference. But gauge invariances of massless states
coming from the Ramond sector – i.e. gravitinos – are different.
Decoupling of gravitino null states – and the associated global
symmetry, which is spacetime supersymmetry – must be studied as
one studies decoupling of massive null states of the bosonic string.
The simplification that in the bosonic string occurs for massless
null states does not arise for gravitinos.
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The reason for this is that the place on a superstring worldsheet Σ
at which a Ramond vertex operator is inserted is built into the
geometry.

The usual description is to say that the odd coordinate
θ has a square root branch point at the location of a Ramond
vertex operator. That is a good description locally. Globally, there
are some advantages in an alternative description in which one
does not talk about square roots but about a certain type of
degeneration of the superconformal structure of Σ along a certain
divisor. But I am not sure we need to understand this today. What
we need to know is just that there is no notion of moving a
Ramond vertex operator while otherwise keeping Σ fixed.
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This does not mean that we can’t prove decoupling of gravitino
null states.

It just means that the proper formalism for doing so is
the same as the proper formalism in bosonic string theory for
proving decoupling of massive null states.

A vertex operator of the bosonic string can be moved around on
the string worldsheet Σ without changing Σ. But in the case of a
massive null state, this information is not useful in proving gauge
invariance. We need a more powerful formalism of integration by
parts on moduli space Mg ,n, not on Σ.

A Ramond sector vertex operator in superstring theory cannot be
moved around on the superstring worldsheet Σ without changing
Σ. So we can’t prove gauge invariance by integration by parts on
Σ. We need a more powerful formalism of integration by parts on
the supermoduli space Mg ,n, not on Σ.
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For those who find this helpful, the fancy way to say this is that
the fibration of Mg ,n →Mg ,n−1 that forgets one puncture

Σ → Mg ,n

↓
Mg ,n−1

has no analog for Ramond punctures on a super Riemann surface.

So we cannot prove gauge-invariance for Ramond states by
integrating over the fibers of such a fibration, as we do for
massless (but not massive) gauge invariances of the bosonic string.
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Roughly ten minutes ago, I explained how to prove
gauge-invariance for massive null states of the bosonic string.

Every step works perfectly for gauge invariances of Ramond (or
NS) states in superstring theory, except that one has to understand
how to interpret a few concepts (integration of forms, the exterior
derivative d, and Stokes’s theorem) on a supermanifold (namely
the supermoduli space Mg ,n). All this is standard, but there isn’t
time to explain the details today. I will just repeat what I said
before, and we can be talking about either massive gauge
invariances of bosonic string theory, or the decoupling of a
gravitino null vector. The only difference will be that in the second
case, we can go to zero momentum in spacetime and define a
global symmetry – spacetime supersymmetry.
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Let us recall what we said before. If V1, . . . ,Vn are BRST-invariant
vertex operators of physical states, then the worldsheet path
integral

〈V1 . . .Vn〉worldsheet
defines a top-form FV1...Vn on moduli space. If one of the V’s is
BRST-trivial, say V1 = {Q,W}, then the worldsheet path integral
with V1 replaced by W

〈W . . .Vn〉worldsheet

defines a codimension-one form FWV2...Vn on moduli space. The
relation between these forms is

FV1V2...Vn = dFWV2...Vn .



So the proof of decoupling of V1 = {Q,W} proceeds as before:

〈V1V2 . . .Vn〉g =

∫
Mg,n

FV1,...,Vn =

∫
Mg,n

dFW,V2,...,Vn

=

∫
∂Mg,n

FW,V2,...,Vn , (2)

where ∂Mg ,n is the “boundary” of moduli space.

In the last step,
we integrated by parts and used Stokes’s theorem. I copied this
from a previous slide, except that I changed Mg ,n to Mg ,n. As
before, to complete the proof, we just have to show that the
boundary contributions vanish. For decoupling of pure gauge
modes from the S-matrix, this poses no real problem.
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For the bosonic string, we only needed this formalism for massive
gauge invariances, which are not related to conservation laws, so
the proofs of conservation laws were more straightforward.

What is
different about superstring theory is that since we need this
formalism for some of the massless gauge fields – gravitinos – there
are conservation laws – spacetime supersymmetry – that really
require this formalism.
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The gauge generator for a gravitino null state is

W = exp(ik · X )ζαSα

where Sα is the fermion vertex operator of Friedan, Martinec, and
Shenker and ζα is a c-number solution of the Dirac equation
k · Γζ = 0. If we set k = 0, the Dirac equation becomes trivial, so
we can forget ζα and take W = Sα (for some α). Now we have
the same formula as the one that proves decoupling of the null
vectors except that we are in the special case that the null vector
V1 = {Q,W} = {Q,Sα} is actually 0:

0 =

∫
Mg,n

FV1,...,Vn =

∫
Mg,n

dFSα,V2,...,Vn =

∫
∂Mg,n

FSα,V2,...,Vn .

The supersymmetric Ward identity comes by explicitly evaluating
the right hand side as a sum over the components of ∂Mg ,n.
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One type of contribution that is always relevant looks like this:

The left part of the worldsheet contains the supercurrent Sα and
precisely one other vertex operator V.
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The contribution of this type of component is an S-matrix element
obtained by replacing the left part of the worldsheet that contains
the product Sα · V by an effective operator that couples to the
right hand side of the picture. This operator is linear in Sα and V,
so we can call it {Qα,V}, where this formula defines the spacetime
supersymmetry generator Qα.

If these are the only contributions,
we get a conservation law

0 =
∑
i

〈V1 . . .Vi−1{Qα,Vi}Vi+1 . . .Vn〉 = 0.

Qα is the spacetime supercharge and this formula is the Ward
identity of spacetime supersymmetry. But spacetime
supersymmetry only holds if these are the only contributions.
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Another type of contribution is conceivable:

In field theory terms, this contribution involves the matrix element
for the supercurrent to create a Goldstone fermion that then
couples to V1 . . .Vn. (Such a contribution arises at 1-loop order in
the SO(32) heterotic string on a Calabi-Yau; this statement is
related to old analyses by Dine-Ichinose-Seiberg and
Atick-Dixon-Sen.)
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So we have a framework in which we can prove spacetime
supersymmetry, and also understand how it can be spontaneously
broken.

The framework is the same one by which one proves gauge
invariances for massive states of the bosonic string. This
framework carries over perfectly well to superstring theory, once
one generalize concepts such as integration of forms and Stokes’s
theorem to supermanifolds such as Mg ,n. The fact that in general
the Ward identity does have a Goldston boson contribution reflects
the fact that it is not really correct to think of the fermion vertex
operator as a conserved current on the string world sheet.
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